A. | $\frac{25}{4}$ | B. | $\frac{31}{4}$ | C. | $\frac{37-6\sqrt{3}}{4}$ | D. | $\frac{37-2\sqrt{33}}{4}$ |
分析 畫出圖形,建立坐標(biāo)系,求出P的軌跡方程,M的軌跡方程,然后利用方程求解|$\overrightarrow{BM}$|2的最小值.
解答 解:由題△ABC為邊長為$2\sqrt{3}$的正三角形,如圖建立平面坐標(biāo)系,
$A(0,3),B(-\sqrt{3},0),C(\sqrt{3},0)$,
由$|\overrightarrow{AP}|=1$得點P的軌跡方程為x2+(y-3)2①,
設(shè)M(x0,y0),由$\overrightarrow{PM}=\overrightarrow{MC}$得$P(2{x_0}-\sqrt{3},2{y_0})$,
代入①式得M的軌跡方程為${(x-\frac{{\sqrt{3}}}{2})^2}+{(y-\frac{3}{2})^2}=\frac{1}{4}$
記圓心為$N(\frac{{\sqrt{3}}}{2},\frac{3}{2})$,${|{BM}|_{min}}=|{BN}|-\frac{1}{2}=3-\frac{1}{2}=\frac{5}{2}$,
故選:A.
點評 本題考查軌跡方程的求法,曲線與方程的關(guān)系,幾何意義的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1 | B. | -$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-$\sqrt{3}$x+2 | B. | y=-$\sqrt{3}$x-2 | C. | y=$\sqrt{3}$x+2 | D. | y=$\sqrt{3}$x-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 90° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{3}$)67 | B. | ($\frac{1}{3}$)68 | C. | ($\frac{1}{3}$)112 | D. | ($\frac{1}{3}$)113 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com