3.已知sin($\frac{π}{2}$+α)=$\frac{1}{7}$,則cos(π-α)=( 。
A.$\frac{1}{7}$B.-$\frac{1}{7}$C.$\frac{4\sqrt{3}}{7}$D.-$\frac{4\sqrt{3}}{7}$

分析 由已知利用誘導(dǎo)公式可求cosα,進而利用誘導(dǎo)公式化簡所求即可得解.

解答 解:∵sin($\frac{π}{2}$+α)=$\frac{1}{7}$,
∴cosα=$\frac{1}{7}$,
∴cos(π-α)=-cosα=-$\frac{1}{7}$.
故選:B.

點評 本題主要考查了誘導(dǎo)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.計算:
(1)8${\;}^{-\frac{1}{3}}}$+(-$\frac{5}{9}$)0-$\sqrt{{{(e-3)}^2}}$;
(2)$\frac{1}{2}$lg25+lg2-log29×log32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,已知在四邊形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.
(1)求∠BDA的大小
(2)求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a>0,b>0,則“a+b>1”是“ab>1”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)是定義在R上的奇函數(shù),且x>0時,f(x)=log2(x+1)+3x,則滿足f(x)>-4的實數(shù)x的取值范圍是( 。
A.(-2,2)B.(-1,1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若直線l:y=ax將不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-6≤0}\\{x≥0,y≥0}\end{array}\right.$,表示的平面區(qū)域的面積分為相等的兩部分,則實數(shù)a的值為( 。
A.$\frac{7}{11}$B.$\frac{9}{22}$C.$\frac{7}{13}$D.$\frac{9}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若cos(75°-a)=$\frac{1}{3}$,則cos(30°+2a)=$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.證明函數(shù)f(x)=-2x+1在R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項和為Sn,已知a1=2,Sn=an+1-2(n+1)(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn+1-bn=4(n∈N*),且b1,b2,b5成等比數(shù)列,數(shù)列$\{\frac{b_n}{{{a_n}+2}}\}$的前n項和為Tn,求證:${T_n}=3-\frac{2n+3}{2^n}$.

查看答案和解析>>

同步練習(xí)冊答案