15.已知f(x)=ax3+bx+2014x2017-4其中a,b為常數(shù),若f(-2)=2,則f(2)=( 。
A.-2B.-4C.-6D.-10

分析 由f(x)=ax3+bx+2014x2017-4,得到f(x)+4=ax3+bx+2014x2017為奇函數(shù),然后利用奇函數(shù)的性質(zhì)直接進(jìn)行求解即可.

解答 解:∵f(x)=ax3+bx+2014x2017-4,
∴f(x)+4=ax3+bx+2014x2017,
則F(x)=f(x)+4為奇函數(shù),
∴F(-2)=-F(2),
即f(-2)+4=-[f(-2)+4]=-f(2)-4,
∴f(2)=-8-f(-2)=-8-2=-10.
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的應(yīng)用,利用條件構(gòu)造函數(shù)F(x)=f(x)+4,利用F(x)=f(x)+4為奇函數(shù)是解決本題的關(guān)鍵,考查學(xué)生的綜合應(yīng)用能力,本題也可以直接代入利用方程組來(lái)進(jìn)行求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.要得到y(tǒng)=3×($\frac{1}{3}$)x的圖象,只需將函數(shù)y=($\frac{1}{3}$)x的圖象( 。
A.向左平移3個(gè)單位B.向右平移3個(gè)單位C.向左平移1個(gè)單位D.向右平移1個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知{an}是公差不為零的等差數(shù)列,a1=1且a1,a3,a9,成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列$\{{2^{a_n}}+{a_n}\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.滿足等式$|\begin{array}{l}{z}&{-i}\\{1-i}&{1+i}\end{array}|$=0的復(fù)數(shù)z為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)f(x)=$\sqrt{3}$cos2ωx+sin(ωx+$\frac{π}{2}$)sinωx+a(其中ω>0,a∈R),且f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為$\frac{π}{6}$.且f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{5π}{6}$]上的最小值為0.
(1)求a,ω的值;
(2)用五點(diǎn)法作出它一個(gè)周期范圍內(nèi)的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.5位老師去聽(tīng)同時(shí)上的4節(jié)課,每位老師可以任選其中的一節(jié)課,不同的聽(tīng)法有( 。
A.54B.5×4×3×2C.45D.4×3×2×1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.定義平面向量之間的一種運(yùn)算“⊙“如下:對(duì)任意的向量$\overrightarrow{a}$=(m,n),$\overrightarrow$=(p,q)(其中m,n,p,q均為實(shí)數(shù)),$\overrightarrow{a}$⊙$\overrightarrow$=mq-np.在下列說(shuō)法中:
(1)若向量與$\overrightarrow$共線,則$\overrightarrow{a}$⊙$\overrightarrow$=0;
(2)$\overrightarrow{a}$⊙$\overrightarrow$=$\overrightarrow$⊙$\overrightarrow{a}$;
(3)對(duì)任意;
(4)($\overrightarrow{a}$⊙$\overrightarrow$)2+($\overrightarrow{a}$•$\overrightarrow$)2=|$\overrightarrow{a}$|2|$\overrightarrow$|2(其中$\overrightarrow{a}$•$\overrightarrow$表示與$\overrightarrow$的數(shù)量積,|$\overrightarrow{a}$|表示向量的模).
正確的說(shuō)法是(1)(3)(4).(寫(xiě)出所有正確的說(shuō)法的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若$\overrightarrow{a}$和$\overrightarrow$是兩個(gè)不共線的非零向量,$\overrightarrow{a}$和$\overrightarrow$起點(diǎn)相同,且$\overrightarrow{a}$,t$\overrightarrow$,$\frac{1}{3}$($\overrightarrow{a}$+$\overrightarrow$)三個(gè)向量的終點(diǎn)在同一條直線上.則t的值是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,在△ABC中,∠C=Rt∠,以頂點(diǎn)C為圓心,BC為半徑作圓.若$AC=4,tanA=\frac{3}{4}$求AB的長(zhǎng)度為5;⊙C截AB所得弦BD的長(zhǎng)為$\frac{18}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案