如圖,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個(gè)點(diǎn).
(Ⅰ)求r的取值范圍;
(Ⅱ)當(dāng)四邊形ABCD的面積最大時(shí),求對(duì)角線AC、BD的交點(diǎn)P的坐標(biāo).

【答案】分析:(1)先聯(lián)立拋物線與圓的方程消去y,得到x的二次方程,根據(jù)拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個(gè)點(diǎn)的充要條件是此方程有兩個(gè)不相等的正根,可求出r的范圍.
(2)先設(shè)出四點(diǎn)A,B,C,D的坐標(biāo)再由(1)中的x二次方程得到兩根之和、兩根之積,表示出面積并求出其的平方值,最后根據(jù)三次均值不等式確定得到最大值時(shí)的點(diǎn)P的坐標(biāo).
解答:解:(Ⅰ)將拋物線E:y2=x代入圓M:(x-4)2+y2=r2(r>0)的方程,
消去y2,整理得x2-7x+16-r2=0(1)
拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個(gè)點(diǎn)的充要條件是:
方程(1)有兩個(gè)不相等的正根


解這個(gè)方程組得

(II)設(shè)四個(gè)交點(diǎn)的坐標(biāo)分別為
、、
則由(I)根據(jù)韋達(dá)定理有x1+x2=7,x1x2=16-r2,



則S2=(7+2t)2(7-2t)下面求S2的最大值.
由三次均值有:
當(dāng)且僅當(dāng)7+2t=14-4t,即時(shí)取最大值.
經(jīng)檢驗(yàn)此時(shí)滿足題意.
故所求的點(diǎn)P的坐標(biāo)為
點(diǎn)評(píng):本題主要考查拋物線和圓的綜合問(wèn)題.圓錐曲線是高考必考題,要強(qiáng)化復(fù)習(xí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個(gè)點(diǎn).
(Ⅰ)求r的取值范圍;
(Ⅱ)當(dāng)四邊形ABCD的面積最大時(shí),求對(duì)角線AC、BD的交點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考真題 題型:解答題

如圖,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0) 相交于A、B、C、D四個(gè)點(diǎn),
(Ⅰ)求r的取值范圍;
(Ⅱ)當(dāng)四邊形ABCD的面積最大時(shí),求對(duì)角線AC、BD的交點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考真題 題型:解答題

如圖,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個(gè)點(diǎn).
(Ⅰ)求r的取值范圍;
(Ⅱ)當(dāng)四邊形ABCD的面積最大時(shí),求對(duì)角線AC、BD的交點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年全國(guó)統(tǒng)一高考數(shù)學(xué)試卷Ⅰ(理科)(解析版) 題型:解答題

如圖,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個(gè)點(diǎn).
(Ⅰ)求r的取值范圍;
(Ⅱ)當(dāng)四邊形ABCD的面積最大時(shí),求對(duì)角線AC、BD的交點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案