(本題滿分14分)

如圖3,在四棱錐PABCD中,底面為直角梯形,AD//BC,ÐBAD=90°,PA^底面ABCD,且PA=AD=AB=2BC=2,MN分別為PC、PB的中點.

(1)求證:PB^DM;

(2)求BD與平面ADMN所成角的大。

(3)求二面角BPCD的大小.

(本小題滿分14分)

解:建立如圖3所示的空間直角坐標(biāo)系,依題意,得

A(0,0,0),B(2,0,0),C(2,1,0),D(0,2,0),

P(0,0,2).              (2分)

(1)因為MPC的中點,所以M(1,,1).

.                 (3分)

因為,所以PB^DM.      (5分)

(2),.

因為,所以PB^AD.

又由(1)知PB^DM,且ADÇDM=D,所以PB^平面ADMN,

為平面ADMN的法向量.                             (6分)

因此的余角等于BD與平面ADMN所成的角.       (7分)

因為,所以,    (8分)

所以BD與平面ADMN所成的角.                         (9分)

(3),,設(shè)平面PBC的法向量為,則

解得

,得.                                   (10分)

,,設(shè)平面PCD的法向量為,則

解得

,得.                                (11分)

因為,                       (12分)

所以,依題意可得二面角BPCD的大小為.          (14分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABEAEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點,使 (O是坐標(biāo)原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習(xí)冊答案