在極坐標(biāo)系中,直線ρsin(θ+
π
4
)=2被圓ρ=4截得的弦長為______.
∵ρsin(θ+
π
4
)=2,
∴ρsinθ-ρcosθ=2
2
,化成直角坐標(biāo)方程為:
x-y+2
2
=0,
圓ρ=4化成直角坐標(biāo)方程為x2+y2=16,
圓心到直線的距離為:d=
|2
2
|
2
=2
 
∴截得的弦長為:
R2-d2
=
16-4
=4
3

故答案為:4
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文科做②;理科從①②兩小題中任意選作一題)
①(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,直線θ=
π
6
(ρ∈R)
截圓ρ=2cos(θ-
π
6
)
的弦長是
2
2

②(不等式選做題)關(guān)于x的不等式|x-a|-|x-1|≤1在R上恒成立(a為常數(shù)),則實(shí)數(shù)a的取值范圍是
[0,2]
[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,直線ρ(2cosθ+sinθ)=2與直線ρcosθ=1的夾角大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(在給出的二個(gè)題中,任選一題作答.若多選做,則按所做的第A題給分)
(A)(坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系中,直線ρsin(θ-
π
4
)=
2
2
與圓ρ=2cosθ
的位置關(guān)系是
相離
相離

(B)(不等式選講)已知對于任意非零實(shí)數(shù)m,不等式|5m-3|+|3-4m|≥|m|(x-
2
x
)
恒成立,則實(shí)數(shù)x的取值范圍是
(-∞,-1]∪(0,2]
(-∞,-1]∪(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•肇慶一模)(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,直線ρ(sinθ-cosθ)=2被圓ρ=4sinθ截得的弦長為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,直線ρcosθ=
12
與曲線ρ=2cosθ相交于A,B兩點(diǎn),O為極點(diǎn),則∠AOB的大小為
 

查看答案和解析>>

同步練習(xí)冊答案