精英家教網 > 高中數學 > 題目詳情

【題目】已知集合A={a1 , a2 , …,an},ai∈R,i=1,2,…,n,并且n≥2. 定義 (例如: ).
(Ⅰ)若A={1,2,3,4,5,6,7,8,9,10},M={1,2,3,4,5},集合A的子集N滿足:N≠M,且T(M)=T(N),求出一個符合條件的N;
(Ⅱ)對于任意給定的常數C以及給定的集合A={a1 , a2 , …,an},求證:存在集合B={b1 , b2 , …,bn},使得T(B)=T(A),且
(Ⅲ)已知集合A={a1 , a2 , …,a2m}滿足:ai<ai+1 , i=1,2,…,2m﹣1,m≥2,a1=a,a2m=b,其中a,b∈R為給定的常數,求T(A)的取值范圍.

【答案】解:(Ⅰ)N={6,7,8,9,10}.
(Ⅱ)證明:令B={d+a1 , d+a2 , …,d+an},(d為待定參數).
T(B)= |(d+ai)﹣(d+aj)|= |aj﹣ai|=T(A), =nd+ =c,
取d= 即可.
(Ⅲ)下面利用數學歸納法證明 |aj﹣ai|= (2m+1﹣2k)(a2m+12k﹣ak),
當m=2時, |aj﹣ai|=|a4﹣a3|+|a3﹣a2|+|a2﹣a1|+|a4﹣a2|+|a3﹣a1|+|a4﹣a1|=3(a4﹣a1)+(|a3﹣a2).成立.
假設結論對m時成立,下面證明m+1時的情形.
|aj﹣ai|= |aj﹣ai|+| (a2m+1﹣ai)+ (a2m+2﹣ai
= (2m+1﹣2k)(a2m+1k﹣ak)+ (a2m+1﹣ai)+ (a2m+2﹣ai
= (2m+1﹣2k)(a2m+1k﹣ak)+(2m﹣1)a2m+1+(2m+1)a2m+2﹣2 ai
= (2m+3﹣2k)(a2m+3k﹣ak),
即T(A)< (2m+1﹣2k)(a2m2k﹣ak)=m2(b﹣a)
【解析】(Ⅰ)根據新定義即可求出答案,(Ⅱ)夠造新數列B={d+a1 , d+a2 , …,d+an},根據新定義可得取d= 即可證明.(Ⅲ)利用數學歸納法即可證明.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】長方體ABCD﹣A1B1C1D1中,AB=2,AA1=1,若二面角A1﹣BD﹣A的大小為 ,則BD1與面A1BD所成角的正弦值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐P﹣ABCD中, , ,△PAB和△PBD都是邊長為2的等邊三角形,設P在底面ABCD的射影為O.
(1)求證:O是AD中點;
(2)證明:BC⊥PB;
(3)求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,
(Ⅰ)若c2=5a2+ab,求 ;
(Ⅱ)求sinAsinB的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 經過點 ,且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)設A,B是橢圓C的左,右頂點,P為橢圓上異于A,B的一點,以原點O為端點分別作與直線AP和BP平行的射線,交橢圓C于M,N兩點,求證:△OMN的面積為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市對所有高校學生進行普通話水平測試,發(fā)現成績服從正態(tài)分布N(μ,σ2),下表用莖葉圖列舉出來抽樣出的10名學生的成績.

(1)計算這10名學生的成績的均值和方差;
(2)給出正態(tài)分布的數據:P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.
由(1)估計從全市隨機抽取一名學生的成績在(76,97)的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知Sn為等差數列{an}的前n項和,S6=51,a5=13.
(1)求數列{an}的通項公式;
(2)數列{bn}的通項公式是bn= , 求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題:“x∈{x|﹣1≤x≤1},都有不等式x2﹣x﹣m<0成立”是真命題.
(1)求實數m的取值集合B;
(2)設不等式(x﹣3a)(x﹣a﹣2)<0的解集為A,若x∈A是x∈B的充分不必要條件,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案