已知函數(shù)f(x)=,g(x)=aln(x-1),其中n∈N*,a為常數(shù).
(1)當(dāng)n=2時,求函數(shù)F(x)=f(x)+g(x)的極值;
(2)若對任意的正整數(shù)n,當(dāng)s≥2,x≥2時,f(s)+g(x)≤x-1.求a的取值范圍.
【答案】分析:(1)求出F(x)的解析式,根據(jù)對數(shù)函數(shù)的性質(zhì),求出其定義域,把n=2代入F(x),利用導(dǎo)數(shù)研究函數(shù)的極值點;
(2)已知對于任意的正整數(shù)n,當(dāng)s≥2,x≥2時,f(s)+g(x)≤x-1,將其轉(zhuǎn)化為1≤x-1-aln(x-1),即只需x-2-aln(x-1)≥0對x≥2成立,再對a進行討論,求出a的范圍;
解答:解:(1)由已知得函數(shù)F(x)的定義域為{x|x>1},
當(dāng)n=2時,F(xiàn)(x)=+aln(x-1),所以F′(x)=,
①當(dāng)a>0時,由F′(x)=0得x1=1+>1,x2=1-<1,
此時F′(x)=,
當(dāng)x∈(1,x1)時,F(xiàn)′(x)<0,F(xiàn)(x)單調(diào)遞減;
當(dāng)x∈(x1,+∞)時,F(xiàn)′(x)>0,F(xiàn)(x)單調(diào)遞增;
從而F(x)在x1=1+處取得極小值,極小值為:F(1+)=(1+ln),
②當(dāng)a≤0時,F(xiàn)′(x)<0恒成立,所以F(x)無極值.
綜上所述,n=2時;
當(dāng)a>0時,F(xiàn)(x)在x=1+處取得極小值,極小值為F(1+)=(1+ln
當(dāng)a≤0時,函數(shù)為減函數(shù),F(xiàn)(x)無極值;
(2)當(dāng)x≥2時,對任意的正整數(shù)n,恒有f(s)=≤1,故對任意的正整數(shù)n,當(dāng)s≥2,x≥2時,
有f(s)+g(x)≤x-1,只需1≤x-1-aln(x-1),即只需x-2-aln(x-1)≥0對x≥2成立,
令h(x)=x-2-aln(x-1),因為h′(x)=1-=(x≥2),又h(2)=0,
所以當(dāng)x∈[2,+∞)時,h(x)≥h(2),即h(x)當(dāng)x∈[2,+∞)時最小值為h(2)=0,
①當(dāng)a≤1,h′(x)=≥0,h(x)當(dāng)x∈[2,+∞)單調(diào)遞增,結(jié)論成立;
②當(dāng)a>1時,當(dāng)x∈[2,1+a),h′(x)<0,x∈[1+a,+∞),h′(x)≥0,又h(2)=0,
故結(jié)論不成立,
綜合得a≤1;
點評:此題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值,解題過程中也用到了分類討論和轉(zhuǎn)化的思想,考查的知識點比較多,這類綜合題,也是高考的熱點問題;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案