精英家教網 > 高中數學 > 題目詳情
已知,在△ABC中,三個內角A、B、C所對的邊分別是a、b、c,分別給出下列四個條件:
(1)tan (A-B) cosC=0;(2)sin(B+C) cos(B-C)=1;(3)acosA=bcosB;(4)sin2(A-B)+cos2C=0.
若滿足條件    ,則△ABC是等腰直角三角形.(只需填寫其中一個序號)
【答案】分析:根據所給的兩個數的平方和等于0,得到這兩個數字都等于0,得到A,B兩個角相等且C等于90°,得到三角形是一個等腰三角形.
解答:解:∵sin2(A-B)+cos2C=0.
∴sin2(A-B)=0,cos2C=0.
∴sin(A-B)=0,cosC=0,
∴A=B,C=90°,
∴三角形是一個等腰三角形.
故答案為:(4)
點評:本題考查三角形形狀的判斷,本題解題的關鍵是看出三角形的三個角所滿足的條件,本題是一個基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知:在△ABC中,a,b,c分別是角A、B、C所對的邊,向量
m
=(2
3
sin
B
2
,
3
2
),
n
=(sin(
B
2
+
π
2
),1)且
m
n
=
3

(1)求角B的大。
(2)若角B為銳角,a=6,S△ABC=6
3
,求b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知:在△ABC中,AB=c,BC=a,AC=b,AB上的中線CD=m,求證:a2+b2=
12
c2+2m2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知:在△ABC中,
AB
AC
<0
,△ABC的面積S△ABC=
15
4
,|
AB
|=3,|
AC
|=5
,則∠BAC=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知:在△ABC中,AD為∠BAC的平分線,AD的垂直平分線EF與AD交于點E,與BC的延長線交于點F,若CF=4,BC=5,則DF=
6
6

查看答案和解析>>

科目:高中數學 來源: 題型:

已知:在△ABC中,A=120°,a=7,b+c=8.
(1)求b,c的值;
(2)求sinB的值.

查看答案和解析>>

同步練習冊答案