精英家教網 > 高中數學 > 題目詳情
判斷f(x)=
1+x
x
在(0,1]上的單調性.
分析:先求函數f(x)的定義域,再進行求導,然后判斷導函數在給定區(qū)間上的符號,最后確定出其單調性.
解答:解:f(x)=
1+x
x
在(0,1]上為減函數.
∵f(x)=
1+x
x
=
1
x
+
x
=x-
1
2
+x
1
2
,
∴f′(x)=-
1
2
x-
3
2
+
1
2
x-
1
2
=-
1
2
x3
+
1
2
x
=
x-1
2
x3

又∵0<x≤1,∴
x-1
2
x3
≤0(當且僅當x=1時取等號),
∴f(x)在(0,1]上為減函數.
點評:本題主要考查了利用導數研究函數的單調性,單調性是函數的重要性質,是高考中?嫉闹R點,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義在D上的函數f(x),如果滿足:對任意x∈D,存在常數M>0,使得|f(x)|≤M成立,則稱f(x) 是D上的有界函數,其中M稱為函數f(x)的上界.已知函數f(x)=4-x+p•2-x+1,g(x)=
1-q•2x
1+q•2x

(Ⅰ)當p=1時,求函數f(x)在(-∞,0)上的值域,并判斷函數f(x)在(-∞,0)上是否為有界函數,請說明理由;
(Ⅱ)若q∈(0,
2
2
]
,函數g(x)在[0,1]上的上界是H(q),求H(q)的取值范圍;
(Ⅲ)若函數f(x)在[0,+∞)上是以3為上界的有界函數,求實數p的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(選作題)定義在(-1,1)上的函數y=f(x)滿足:對任意x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
)

(1)判斷函數f(x)的奇偶性,并證明;
(2)如果當x∈(-1,0)時,有f(x)>0,求證:f(x)在(-1,1)上是單調遞減函數;
(3)在(2)的條件下解不等式:f(x+
1
2
)+f(
1
1-x
)>0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合M是同時滿足下列兩個性質的函數f(x)的全體:①f(x)在其定義域上是單調函數;②在f(x)的定義域內存在閉區(qū)間[a,b],使得f(x)在[a,b]上的最小值是
a
2
,最大值是
b
2
.請解答以下問題:
(1)判斷函數g(x)=-x3是否屬于集合M?并說明理由,若是,請找出滿足②的閉區(qū)間[a,b];
(2)若函數h(x)=
x-1
+t∈M
,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•浦東新區(qū)二模)已知函數y=f(x),x∈D,如果對于定義域D內的任意實數x,對于給定的非零常數m,總存在非零常數T,恒有f(x+T)>m•f(x)成立,則稱函數f(x)是D上的m級類增周期函數,周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數f(x)是D上的m級類周期函數,周期為T.
(1)試判斷函數f(x)=log
12
(x-1)
是否為(3,+∞)上的周期為1的2級類增周期函數?并說明理由;
(2)已知函數f(x)=-x2+ax是[3,+∞)上的周期為1的2級類增周期函數,求實數a的取值范圍;
(3)下面兩個問題可以任選一個問題作答,如果你選做了兩個,我們將按照問題(Ⅰ)給你記分.
(Ⅰ)已知T=1,y=f(x)是[0,+∞)上m級類周期函數,且y=f(x)是[0,+∞)上的單調遞增函數,當x∈[0,1)時,f(x)=2x,求實數m的取值范圍.
(Ⅱ)已知當x∈[0,4]時,函數f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級類周期函數,且y=f(x)的值域為一個閉區(qū)間,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于定義在D上的函數f(x),如果存在常數M和N,使得對于任意x∈D,都有M≤f(x)≤N成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的一個下界,N稱為函數f(x)的一個上界.
(1)判斷函數f(x)=log2x-x2在(0,+∞)上是否為有界函數,不必說明理由;
(2)判斷函數f(x)=1+(
1
2
x+(
1
4
x在[0,+∞)上是否為有界函數,請說明理由
(3)若函數f(x)=1+a(
1
2
x+(
1
4
x在[0,+∞)上是有界函數,且3是f(x)的一個上界,-3是f(x)的一個下界,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案