若向量=(1,1),=(2,5),=(3,)滿(mǎn)足條件(8=30,則

A.6              B.5             C.4           D.3

 

【答案】

C

【解析】

試題分析:因?yàn)?8=30,所以,

所以x=4.

考點(diǎn):向量數(shù)量積的坐標(biāo)表示.

點(diǎn)評(píng):本小題根據(jù)向量的數(shù)量積的坐標(biāo)表示建立關(guān)于x的方程,求出x的值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若向量
AB
=(1,3)
BC
=(2,4)
,則
AC
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線(xiàn)y2-x+y=0在矩陣M-1對(duì)應(yīng)的線(xiàn)性變換作用下得到的曲線(xiàn)方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為(4
2
,
π
4
)
,曲線(xiàn)C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線(xiàn)OM的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)M到曲線(xiàn)C上的點(diǎn)的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實(shí)數(shù)a,b滿(mǎn)足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線(xiàn)y2-x+y=0在矩陣M-1對(duì)應(yīng)的線(xiàn)性變換作用下得到的曲線(xiàn)方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為(4
2
,
π
4
),曲線(xiàn)C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線(xiàn)OM的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)M到曲線(xiàn)C上的點(diǎn)的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實(shí)數(shù)a、b滿(mǎn)足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求x的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(廣東卷)文科數(shù)學(xué)全解全析 題型:選擇題

若向量=(1,1),=(2,5),=(3,x)滿(mǎn)足條件(8=30,則x=

A.6    B.5      C.4       D.3

 

查看答案和解析>>

同步練習(xí)冊(cè)答案