設(shè)是橢圓的左焦點,直線方程為,直線與軸交于點,、分別為橢圓的左右頂點,已知,且.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率為的直線交橢圓于、兩點,求三角形面積.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在x軸上,離心率為,短軸長為4.
(I)求橢圓C的標準方程;
(II)直線x=2與橢圓C交于P、Q兩點,A、B是橢圓O上位于直線PQ兩側(cè)的動點,且直線AB的斜率為.
①求四邊形APBQ面積的最大值;
②設(shè)直線PA的斜率為,直線PB的斜率為,判斷+的值是否為常數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
求傾斜角是直線y=-x+1的傾斜角的,且分別滿足下列條件的直線方程:(1)經(jīng)過點(,-1);(2)在y軸上的截距是-5.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓C的方程;
(2)設(shè),、是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,求直線的斜率的取值范圍;
(3)在(2)的條件下,證明直線與軸相交于定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,設(shè)點(),直線:,點在直線上移動,是線段與軸的交點, 過、分別作直線、,使, .
(1)求動點的軌跡的方程;
(2)在直線上任取一點做曲線的兩條切線,設(shè)切點為、,求證:直線恒過一定點;
(3)對(2)求證:當直線的斜率存在時,直線的斜率的倒數(shù)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上.若橢圓上的點到焦點、的距離之和等于4.
(1)寫出橢圓的方程和焦點坐標.
(2)過點的直線與橢圓交于兩點、,當的面積取得最大值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)是橢圓上的兩點,已知向量,若且橢圓的離心率,短軸長為2,O為坐標原點.
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
曲線都是以原點O為對稱中心、坐標軸為對稱軸、離心率相等的橢圓.點M的坐標是(0,1),線段MN是曲線的短軸,并且是曲線的長軸 . 直線與曲線交于A,D兩點(A在D的左側(cè)),與曲線交于B,C兩點(B在C的左側(cè)).
(1)當=,時,求橢圓的方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:(a>b>0),則稱以原點為圓心,r=的圓為橢圓C的“知己圓”。
(Ⅰ)若橢圓過點(0,1),離心率e=;求橢圓C方程及其“知己圓”的方程;
(Ⅱ)在(Ⅰ)的前提下,若過點(0,m)且斜率為1的直線截其“知己圓”的弦長為2,求m的值;
(Ⅲ)討論橢圓C及其“知己圓”的位置關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com