變量x,y滿足約束條件
x-y≥1
x+y≤4
y≥1
,目標(biāo)函數(shù)z=2x+4y的最大值是
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組
x-y≥1
x+y≤4
y≥1
對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x+4y得y=-
1
2
x+
z
4

平移直線y=-
1
2
x+
z
4
,由圖象可知當(dāng)直線y=-
1
2
x+
z
4
經(jīng)過點(diǎn)A時(shí),
直線y=-
1
2
x+
z
4
的截距最大,此時(shí)z最大,
x-y=1
x+y=4
,解得
x=
5
2
y=
3
2
,
即A(
5
2
,
3
2
),
此時(shí)z=2×
5
2
+4×
3
2
=5+6=11,
故答案為:11.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-
y2
9
=-5的一條漸近線方程是(  )
A、2x-3y=0
B、3x+2y=0
C、9x-4y=0
D、4x-9y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
4x2+6x
4x2+9
,(x∈R)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P為拋物線y=
1
2
x2上的動(dòng)點(diǎn),點(diǎn)P在x軸上的射影為M,點(diǎn)A的坐標(biāo)是(6,
17
2
),則|PA|+|PM|的最小值是( 。
A、8
B、
19
2
C、10
D、
21
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i為虛數(shù)單位,復(fù)數(shù)z=(1+i)2,則z的共軛復(fù)數(shù)為( 。
A、-2iB、2i
C、2-2iD、2+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+
1
2
n,則a32-a22=( 。
A、9
B、18
C、21
D、
11
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
1-i
i
的虛部是( 。
A、1B、-1C、iD、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

全集U={1,-2,3,-4,5,-6},M={1,-2,3,-4},則∁UM( 。
A、{1,3}
B、{5,-6}
C、{1,5}
D、{-4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓mx2+ny2=1(m>0,n>0)與直線x+y-1=0交于A,B兩點(diǎn),若m:n=1:
2
,則過原點(diǎn)與線段AB的中點(diǎn)M的連線的斜率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案