(2012•安慶二模)已知函數(shù)f(x)由下表定義
x 2 5 3 1 4
f(x)
π
2
0
sinxdx
2 3 4 5
若a0=5,an+1=f(an),n∈N,則a2012=( 。
分析:先計(jì)算出ai的幾個(gè)值,直到找出規(guī)律即函數(shù)的周期即可求出函數(shù)值.
解答:解:∵a0=5,∴a1=f(5)=2,
∴a2=f(2)=
π
2
0
sinxdx=-cosx
|
π
2
0
=1,
∴a3=f(1)=4,
∴a4=f(4)=5,
由以上可知:an+4=an,(n∈N),
∴a2012=a503×4+0=a0=5.
故選D.
點(diǎn)評(píng):本題考查了函數(shù)的周期性,深刻理解函數(shù)的周期性是解決好本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安慶二模)復(fù)數(shù)
1+7i
i
的共軛復(fù)數(shù)是a+bi(a,b∈R),i是虛數(shù)單位,則ab的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安慶二模)下列命題中錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安慶二模)以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,則曲線
x=
7
cosφ
y=
7
sinφ
(φ為參數(shù),φ∈R)上的點(diǎn)到曲線ρcosθ+ρsinθ=4(ρ,θ∈R)的最短距離是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安慶二模)函數(shù)f(x)的圖象如圖所示,已知函數(shù)F(x)滿足F′(x)=f(x),則F(x)的函數(shù)圖象可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安慶二模)設(shè)(2
3x
-1)n
的展開(kāi)式的各項(xiàng)系數(shù)之和為M,二項(xiàng)式系數(shù)之和為N,若M,8,N三數(shù)成等比數(shù)列,則展開(kāi)式中第四項(xiàng)為
-160x
-160x

查看答案和解析>>

同步練習(xí)冊(cè)答案