設(shè)a>0,集合A={(x,y)|
x≤3
x+y-4≤0
x-y+2a≥0
},B={(x,y)|(x-1)2+(y-1)2≤a2}.若點(diǎn)P(x,y)∈A是點(diǎn)P(x,y)∈B的必要不充分條件,則a的取值范圍是
 
分析:關(guān)鍵要做出集合A和集合B表示的平面區(qū)域,利用圓心到直線(xiàn)的距離與半徑的關(guān)系列出關(guān)于a的不等式,從而達(dá)到求解的目的.
解答:解:由點(diǎn)P(x,y)∈A是點(diǎn)P(x,y)∈B的必要不充分條件得到P(x,y)∈B?P(x,y)∈A,
而反之不成立.即集合B確定的圓面在集合A確定的區(qū)域內(nèi)部.
從而得到圓面的半徑≤圓心到相應(yīng)直線(xiàn)的距離,
因此有
a≤3-1
a≤
2
2
a≤
|2a
2
,解出a≤
2
,又a>0,
故答案為:(0,
2
].
點(diǎn)評(píng):本題主要考查了線(xiàn)性規(guī)劃知識(shí),直線(xiàn)與圓的位置關(guān)系,必要不充分條件的轉(zhuǎn)化等知識(shí),考查學(xué)生數(shù)形結(jié)合的思想,等價(jià)轉(zhuǎn)化的思想,屬于中等難度題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,集合A={x||x|≤a},B={x|x2-2x-3<0},
(I)當(dāng)a=2時(shí),求集合A∪B;
(II)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,集合A={x||x|≥2},B={x|(x-2a)(x+3)<0}.
(Ⅰ)當(dāng)a=3時(shí),求集合A∩B;
(Ⅱ)若A∪B=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,集合A={(x,y)|
x≤3
x+y-4≤0
x-y+2a≥0
},B={(x,y)|(x-1)2+(y-1)2≤a2}.若點(diǎn)P(x,y)∈A是點(diǎn)P(x,y)∈B的必要不充分條件,則a的取值范圍是      ( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,集合A={x||x|≤a},B={x|x2﹣2x﹣3<0},

(I)當(dāng)a=2時(shí),求集合A∪B;

(II)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案