(本題滿分12分)已知圓C:(為參數(shù),∈R).O為坐標原點,動點P在圓C外,過P作圓C的切線l,設切點為M.(1)若點P運動到(1,3)處,求此時切線l的方程;
(2)求滿足條件的點P的軌跡方程.
(Ⅰ) x=1或3x+4y-15=0 (Ⅱ) 2x-4y+1=0
把圓C的方程化為標準方程為(x+1)2+(y-2)2=4,
∴ 圓心為(-1,2),半徑為2.……2分
(1)當l的斜率不存在時,此時l的方程為x=1,滿足條件.……………4分
當l的斜率存在時,設斜率為k,得l的方程為y-3=k(x-1),即kx-y+3-k=0,
∵ ,解得 .∴ l的方程為3x+4y-15=0.
綜上,滿足條件的切線l的方程為x=1或3x+4y-15=0. …………7分
(2)設P(x,y),∵ |PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-4,|PO|2=x2+y2,
∴ 由|PM|=|PO|有(x+1)2+(y-2)2-4=x2+y2,整理得2x-4y+1=0,
即點P的軌跡方程為2x-4y+1=0.……12分
科目:高中數(shù)學 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源:安徽省合肥一中、六中、一六八中學2010-2011學年高二下學期期末聯(lián)考數(shù)學(理 題型:解答題
(本題滿分12分)已知△的三個內(nèi)角、、所對的邊分別為、、.,且.(1)求的大小;(2)若.求.
查看答案和解析>>
科目:高中數(shù)學 來源:2011屆本溪縣高二暑期補課階段考試數(shù)學卷 題型:解答題
(本題滿分12分)已知各項均為正數(shù)的數(shù)列,
的等比中項。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項和為Tn,求Tn。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年廣東省揭陽市高三調(diào)研檢測數(shù)學理卷 題型:解答題
(本題滿分12分)
已知橢圓:的長軸長是短軸長的倍,,是它的左,右焦點.
(1)若,且,,求、的坐標;
(2)在(1)的條件下,過動點作以為圓心、以1為半徑的圓的切線(是切點),且使,求動點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年遼寧省高二上學期10月月考理科數(shù)學卷 題型:解答題
(本題滿分12分)已知橢圓的長軸,短軸端點分別是A,B,從橢圓上一點M向x軸作垂線,恰好通過橢圓的左焦點,向量與是共線向量
(1)求橢圓的離心率
(2)設Q是橢圓上任意一點,分別是左右焦點,求的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com