關(guān)于x的二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上有解,求實(shí)數(shù)m的取值范圍.


解 設(shè)f(x)=x2+(m-1)x+1,x∈[0,2],

①若f(x)=0在區(qū)間[0,2]上有一解,

∵f(0)=1>0,則應(yīng)有f(2)≤0,

又∵f(2)=22+(m-1)×2+1,∴m≤-.

②若f(x)=0在區(qū)間[0,2]上有兩解,則

由①②可知m≤-1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


某商家一月份至五月份累計(jì)銷售額達(dá)3 860萬元,預(yù)測(cè)六

月份銷售額為500萬元,七月份銷售額比六月份遞增x%,八月份銷售額比七月份遞增x%,九、十月份銷售總額與七、八月份銷售總額相等,若一月份至十月份銷售總額至少達(dá)7 000萬元,則x的最小值是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


在“綈p”,“p∧q”,“p∨q”形式的命題中“p∨q”為真,“p∧q”為假,“綈p”

為真,那么p,q的真假為p______,q______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


某企業(yè)為打入國際市場(chǎng),決定從A、B兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn).已

知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬美元)

項(xiàng)目類別

年固定成本

每件產(chǎn)品成本

每件產(chǎn)品銷售價(jià)

每年最多可生產(chǎn)的件數(shù)

A產(chǎn)品

20

m

10

200

B產(chǎn)品

40

8

18

120

其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),m為待定常數(shù),其值由生產(chǎn)A產(chǎn)品的原材料價(jià)格決定,預(yù)計(jì)m∈[6,8].另外,年銷售x件B產(chǎn)品時(shí)需上交0.05x2萬美元的特別關(guān)稅.假設(shè)生產(chǎn)出來的產(chǎn)品都能在當(dāng)年銷售出去.

(1)寫出該廠分別投資生產(chǎn)A、B兩種產(chǎn)品的年利潤y1,y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x之間的函數(shù)關(guān)系并指明其定義域;

(2)如何投資才可獲得最大年利潤?請(qǐng)你做出規(guī)劃.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知函數(shù)f(x)=x2+(1-k)x-k的一個(gè)零點(diǎn)在(2,3)內(nèi),則實(shí)數(shù)k的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知函數(shù)f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,則f(x)的最大值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)abc>0,二次函數(shù)f(x)=ax2+bx+c的圖象可能是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知f(x)=loga (a>0,a≠1).

(1)求f(x)的定義域;

(2)判斷f(x)的奇偶性并予以證明;

(3)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


函數(shù)f(x)=lg(x-1)的定義域是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案