精英家教網 > 高中數學 > 題目詳情
6、已知{an}是等差數列,a1+a15=48,則a3+3a8+a13=( 。
分析:由a1+a15=48,求出a8的值,則a3+3a8+a13=5a8,從而能得到其最終結果.
解答:解:∵a1+a15=2a8=48,∴a8=24,
∴a3+3a8+a13=5a8=120.
故選A.
點評:本題考查數列的性質和應用,解題時要認真審題,仔細求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數列{a2k-1}是等差數;數列{a2k}是等比數列;(其中k∈N*);
(II)記an=f(n),對任意的正整數n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設Sn是等差數{an}的前n項和,已知S6=36,Sn=324,若Sn-6=144(n>6),則n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數列{a2k-1}是等差數;數列{a2k}是等比數列;(其中k∈N*);
(II)記an=f(n),對任意的正整數n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年重慶市南開中學高三(上)期末數學試卷(文科)(解析版) 題型:解答題

已知滿足:
(I)求證:數列{a2k-1}是等差數;數列{a2k}是等比數列;(其中k∈N*);
(II)記an=f(n),對任意的正整數n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

同步練習冊答案