已知的最大值

【錯(cuò)解分析】此題學(xué)生都能通過(guò)條件將問(wèn)題轉(zhuǎn)化為關(guān)于的函數(shù),進(jìn)而利用換元的思想令將問(wèn)題變?yōu)殛P(guān)于t的二次函數(shù)最值求解。但極易忽略換元前后變量的等價(jià)性而造成錯(cuò)解,
【正解】由已知條件有(結(jié)合
,而==
則原式=
根據(jù)二次函數(shù)配方得:當(dāng)時(shí),原式取得最大值。
【點(diǎn)評(píng)】“知識(shí)”是基礎(chǔ),“方法”是手段,“思想”是深化,提高數(shù)學(xué)素質(zhì)的核心就是提高學(xué)生對(duì)數(shù)學(xué)思想方法的認(rèn)識(shí)和運(yùn)用,數(shù)學(xué)素質(zhì)的綜合體現(xiàn)就是“能力”,解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問(wèn)題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問(wèn)題標(biāo)準(zhǔn)化、復(fù)雜問(wèn)題簡(jiǎn)單化,變得容易處理。換元法又稱(chēng)輔助元素法、變量代換法。通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結(jié)論聯(lián)系起來(lái)。或者變?yōu)槭煜さ男问,把?fù)雜的計(jì)算和推證簡(jiǎn)化。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若角的終邊落在射線上,則=____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為偶函數(shù),則可以取的一個(gè)值為( )
A.B.C.-D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

求值:________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)化簡(jiǎn):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)
已知,且是方程的兩根.
(1)求的值.     (2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
(1)當(dāng),求的值;
(2)設(shè),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為第二象限角,,則(   ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若角的終邊上有一點(diǎn),則的值是.
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案