精英家教網 > 高中數學 > 題目詳情
(2009•上海模擬)圓x2+y2-8x+6y+16=0與圓x2+y2=64的位置關系是(  )
分析:把第一個圓的方程化為標準方程,找出圓心A的坐標和半徑r,再由第二個圓的方程找出圓心B的坐標和半徑R,利用兩點間的距離公式求出兩圓心間的距離d,發(fā)現(xiàn)d=R-r,從而判斷出兩圓位置關系是內切.
解答:解:把圓x2+y2-8x+6y+16=0化為標準方程得:(x-4)2+(y+3)2=9,
∴圓心A的坐標為(4,-3),半徑r=3,
由圓x2+y2=64,得到圓心B坐標為(0,0),半徑R=8,
兩圓心間的距離d=|AB|=
42+(-3)2
=5,
∵8-3=5,即d=R-r,
則兩圓的位置關系是內切.
故選C
點評:此題考查了圓的標準方程,兩點間的基本公式,以及圓與圓位置關系的判斷,圓與圓位置關系的判斷方法為:當0≤d<R-r時,兩圓內含;當d=R-r時,兩圓內切;當R-r<d<R+r時,兩圓相交;當d=R+r時,兩圓外切;當d>R+r時,兩圓相離(d表示兩圓心間的距離,R及r分別表示兩圓的半徑).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2009•上海模擬)在解決問題:“證明數集A={x|2<x≤3}沒有最小數”時,可用反證法證明.假設a(2<a≤3)是A中的最小數,則取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,與假設中“a是A中的最小數”矛盾!那么對于問題:“證明數集B={x|x=
n
m
,m,n∈N*,并且n<m}
沒有最大數”,也可以用反證法證明.我們可以假設x=
n0
m0
是B中的最大數,則可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,這與假設矛盾!所以數集B沒有最大數.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•上海模擬)定義區(qū)間(m,n),[m,n],(m,n],[m,n)的長度均為n-m,其中n>m.
(1)若關于x的不等式2ax2-12x-3>0的解集構成的區(qū)間的長度為
6
,求實數a的值;
(2)已知關于x的不等式sinxcosx+
3
cos2x+b>0
,x∈[0,π]的解集構成的各區(qū)間的長度和超過
π
3
,求實數b的取值范圍;
(3)已知關于x的不等式組
7
x+1
>1 
log2x+log2(tx+3t)<2
的解集構成的各區(qū)間長度和為6,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•上海模擬)已知全集U=R,集合A={x|x2-2x-3≤0,x∈R},B={x||x-2|<2,x∈R},那么集合A∩B=
{x|0<x≤3}
{x|0<x≤3}

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•上海模擬)已知集合A={z|z=1+i+i2+…+in,n∈N*},B={ω|ω=z1•z2,z1、z2∈A},(z1可以等于z2),從集合B中任取一元素,則該元素的模為
2
的概率為
2
7
2
7

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•上海模擬)已知點列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x4
上的點,點列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點,其中x1=a(0<a<1),對任意的n∈N*,點An、Bn、An+1構成以Bn為頂點的等腰三角形.
(1)證明:數列{yn}是等差數列;
(2)求證:對任意的n∈N*,xn+2-xn是常數,并求數列{xn}的通項公式;
(3)對上述等腰三角形AnBnAn+1添加適當條件,提出一個問題,并做出解答.(根據所提問題及解答的完整程度,分檔次給分)

查看答案和解析>>

同步練習冊答案