P(x,y)是橢圓
x2
9
+
y2
4
=1
上的點(diǎn),若m=2x-y,則m的取值范圍是
 
考點(diǎn):橢圓的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由P(x,y)是橢圓
x2
9
+
y2
4
=1
上的點(diǎn),設(shè)x=3cosa,y=2sina,(0≤a≤2π),從而求解.
解答: 解:∵P(x,y)是橢圓
x2
9
+
y2
4
=1
上的點(diǎn),
∴設(shè)x=3cosa,y=2sina,(0≤a≤2π),
∴m=2x-y=6cosa-2sina
=2
10
sin(a+θ),
∵-1≤sin(a+θ)≤1,
∴-2
10
≤2
10
sin(a+θ)≤2
10
,
故答案為:[-2
10
,2
10
]
點(diǎn)評:本題考查了橢圓的簡單性質(zhì),借助參數(shù)方程使化簡簡化,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列各組中的兩個(gè)函數(shù)是同一函數(shù)的是( 。
A、f(x)=(x-1)0與g(x)=1
B、f(x)=x與g(x)=
x2
C、f(x)=
1-x
x2+1
與g(x)=
1+x
x2+1
D、f(x)=
(
x
)4
x
與g(t)=(
t
t
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
(3a-1)x+4a,(x<1)
-ax,(x≥1)
是定義在(-∞,+∞)上是減函數(shù),則a的取值范圍是( 。
A、[
1
8
,
1
3
B、[0,
1
3
]
C、(0,
1
3
D、(-∞,
1
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①三角形一定是平面圖形;
②互相平行的三條直線都在同一平面內(nèi);
③梯形一定是平面圖形;
④四邊都相等的四邊形是菱形.
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P為拋物線:y2=4x上一動(dòng)點(diǎn),定點(diǎn)A(2,4
5
)
,則|PA|與P到y(tǒng)軸的距離之和的最小值為(  )
A、9B、10C、8D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx,g(x)=
1nx
x

(Ⅰ)求函數(shù)g(x)=
1nx
x
的單調(diào)區(qū)間;
(Ⅱ)若不等式f(x)≥g(x)在區(qū)間(0,+∞)上恒成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)求證
1n2
2
4
 
+
1n3
3
4
 
+…+
1nn
n
4
 
1
2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABCDE中,AE⊥平面ABC,BD∥AE,且AC=AB=BC=BD=2,AE=1
(Ⅰ)求二面角C-BD-A的大。  
(Ⅱ)求直線CE與平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為0的等差數(shù)列{an}中,a1=2,{an}部分項(xiàng)按原來的順序由小到大組成等比數(shù)列{akn},且k1=1,k2=3,k3=11.
(1)求該等比數(shù)列的公比q;  
(2)求akn及kn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)為正數(shù),其前n項(xiàng)和Sn滿足Sn=(
an+1
2
)2
,設(shè)bn=20-an(n∈N*
(1)求證:數(shù)列{an}是等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)求數(shù)列{|bn|}的前n項(xiàng)和Bn

查看答案和解析>>

同步練習(xí)冊答案