下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( 。
A、y=2|x|
B、y=x3
C、y=-x2+1
D、y=cosx
考點:函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應用
分析:利用基本函數(shù)的奇偶性、單調(diào)性逐項判斷即可.
解答: 解:A中,y=2|x|是偶函數(shù),但在(0,+∞)上單調(diào)遞增,排除A;
B中,y=x3是奇函數(shù),排除B;
C中,y=-x2+1是偶函數(shù),且在(0,+∞)上單調(diào)遞減;
D中,y=cosx是偶函數(shù),但在(0,+∞)上不單調(diào),排除D;
故選:C.
點評:本題考查函數(shù)的奇偶性、單調(diào)性的判斷,屬基礎(chǔ)題,熟記常見基本函數(shù)的有關(guān)性質(zhì)是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
log
1
3
(2x-1)
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合U={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},若P(2,3)∈A∩(∁UB),則( 。
A、m>-1且n<5
B、m<-1且n<5
C、m>-1且>5
D、m<-1且n>5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出四個函數(shù)圖象分別滿足:
①f(x+y)=f(x)+f(y);
②g(x+y)=g(x)•g(y);
③u(x•y)=u(x)+u(y);
④v(x•y)=v(x)•v(y).
與如圖函數(shù)圖象對應的是( 。
A、①-a,②-b,③-c,④-d
B、①-b,②-c,③-a,④-d
C、①-a,②-c,③-b,④-d
D、①-d,②-a,③-b,④-c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos(x+
π
2
)cosx(x∈R),則下面結(jié)論錯誤的是( 。
A、函數(shù)f(x)的最小正周期為π
B、函數(shù)f(x)在區(qū)間[0,
π
2
]上是增函數(shù)
C、函數(shù)f(x)的圖象關(guān)于直線x=
π
4
對稱
D、函數(shù)f(x)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個物體的運動方程為s=1+t+t2,其中s的單位是米,t的單位是秒,那么物體在3秒末的瞬時速度是( 。
A、7米/秒B、6米/秒
C、5米/秒D、8米/秒

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若b<0<a,d<c<0,則( 。
A、ac>bd
B、
a
c
b
d
C、a-c>b-d
D、a-d>b-c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的方程:x-y-1=0,則直線l的傾斜角α=( 。
A、45°B、60°
C、120°D、135°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

寫出符合下列條件的曲線的標準方程:
(1)頂點為坐標原點,焦點在y軸上,點M(a,2)到準線的距離為3,求拋物線的標準方程;
(2)與雙曲線
x2
4
-
y2
3
=1有共同的漸近線且過點A(2,-3)求雙曲線標準方程;
(3)已知M(-2,0),N(2,0),則以MN為斜邊的直角三角形的直角頂點P的軌跡方程.

查看答案和解析>>

同步練習冊答案