10.設(shè)命題p:函數(shù)$y=sin(2x+\frac{π}{6})$的圖象關(guān)于直線$x=\frac{π}{6}$對稱;命題q:函數(shù)y=|3x-1|在[-1,+∞)上是增函數(shù).則下列判斷錯誤的是(  )
A.p為假B.¬q為真C.p∧q為假D.p∨q為真

分析 令2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,可得函數(shù)的對稱軸,即可判斷命題P是否正確;將含有絕對值符合的函數(shù)轉(zhuǎn)化為分段函數(shù)求單調(diào)區(qū)間,來判斷命題q是否正確,再利用復(fù)合命題真值表分析求解.

解答 解:∵函數(shù)$y=sin(2x+\frac{π}{6})$,令2x+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,解得:x=kπ+$\frac{π}{6}$,k∈Z,當k=0時,x=$\frac{π}{6}$是函數(shù)$y=sin(2x+\frac{π}{6})$的對稱軸,
∴命題P正確;
∵函數(shù)y=|3x-1|=$\left\{\begin{array}{l}{{3}^{x}-1}&{x≥0}\\{1-{3}^{x}}&{x<0}\end{array}\right.$,
∴函數(shù)在(0,+∞)上是增函數(shù),在(-∞,0)上是減函數(shù),故命題q錯誤.
根據(jù)復(fù)合命題真值表,A錯誤;B正確;C正確;D錯誤.
故選:A.

點評 本題借助考查命題的真假判斷,考查正弦函數(shù)的對稱性及指數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=a+$\frac{1}{4^x+1}$是奇函數(shù).
(1)求實數(shù)a的值;   
(2)確定函數(shù)f(x)的單調(diào)性;    
(3)當x∈[-1,2)時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)已知角α終邊上一點P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值
(2)已知cos(π+α)=-$\frac{1}{2}$,且α是第四象限角,計算:$\frac{sin[α+(2n+1)π]+sin[α-(2n+1)π]}{sin(α+2nπ)•cos(α-2nπ)}$(n∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=2sinxcos(φ-x)-\frac{1}{2}$($0<φ<\frac{π}{2}$)的圖象過點$(\frac{π}{3},1)$.
(Ⅰ)求φ的值;        
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足b1=a1=3,b4=a2,b13=a3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=(-1)nbn+an,求數(shù)列{cn}的前2n項和S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某班100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均數(shù)、中位數(shù)、眾數(shù);
(2)若這100名學(xué)生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分數(shù)段的人數(shù)(y)之比如表所示,求數(shù)學(xué)成績在[50,80)之外的人數(shù).
分數(shù)段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.從甲、乙、丙、丁、戊5名同學(xué)中任選4名參加接力賽,其中,甲不跑第一棒,乙、丙不跑相鄰兩棒,則不同的選排總數(shù)為( 。
A.48B.56C.60D.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)f(x)=a(x-5)2+6lnx,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與2x-y+6=0.
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.各項均為正數(shù)的等比數(shù)列{an},其前n項和為Sn.若a2-a5=-78,S3=13,則數(shù)列{an}的通項公式an=3n-1

查看答案和解析>>

同步練習(xí)冊答案