【題目】已知.

1求函數(shù)最值;

2,求證:.

【答案】1 取最大值,無最小值;2詳見解析.

【解析】

試題分析:1分析函數(shù)的導(dǎo)數(shù),并且求函數(shù)的極值點,并且分析極值點兩側(cè)的單調(diào)性,求函數(shù)的最值;

2設(shè),根據(jù)1可知,然后采用分析法的證明思路,轉(zhuǎn)化為證明,設(shè),,根據(jù)函數(shù)的導(dǎo)數(shù),可知函數(shù)是單調(diào)遞增函數(shù)所以,得證.

試題解析:1求導(dǎo)可得,

得x=0.

當(dāng)時,,函數(shù)單調(diào)遞增;

當(dāng)時,,函數(shù)單調(diào)遞減,

當(dāng)x=0時,取最大值,無最小值.

2不妨設(shè),由1

當(dāng)時,,函數(shù)單調(diào)遞增;

當(dāng)時,,函數(shù)單調(diào)遞減,

,則,

欲證:,只需證:,

函數(shù)單調(diào)遞減,

只需證:,考慮到,即證,也即證

下證:,

設(shè)

,

,故gx上單調(diào)遞增,

時,gx<g0=0,即fx-f-x<0,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】復(fù)數(shù)2+3i的共軛復(fù)數(shù)是(

A. -2+3i B. 2-3i C. -2-3i D. 3-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市要建成宜商、宜居的國際化現(xiàn)代新城,該城市的東城區(qū)、西城區(qū)分別引進8甲廠家,現(xiàn)對兩個區(qū)域的16個廠家進行評估,綜合得分情況如莖葉圖所示.

1根據(jù)莖葉圖判斷哪個區(qū)域廠家的平均分較高;

2規(guī)定85分以上含85分為優(yōu)秀廠家,若從該兩個區(qū)域各選一個優(yōu)秀廠家,求得分差距不超過5分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機抽取某中學(xué)高一級學(xué)生的一次數(shù)學(xué)統(tǒng)測成績得到一樣本,其分組區(qū)間和頻數(shù)是:,2;,7;,10;,x;[90,100],2.其頻率分布直方圖受到破壞,可見部分如下圖所示,據(jù)此解答如下問題.

1求樣本的人數(shù)及x的值;

2估計樣本的眾數(shù),并計算頻率分布直方圖中的矩形的高;

3從成績不低于80分的樣本中隨機選取2人,該2人中成績在90分以上含90分的人數(shù)記為,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們?nèi)掌骄黾拥乃邥r間(單位:h).試驗的觀測結(jié)果如下:

服用A藥的20位患者日平均增加的睡眠時間:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5

2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4

服用B藥的20位患者日平均增加的睡眠時間:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4

1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5

(1)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果看,哪種藥的療效更好?

(2)根據(jù)兩組數(shù)據(jù)繪制莖葉圖,從莖葉圖看,哪種藥的療效更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出1×2×3×4×5×6×7的一個算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

(1)已知,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;

(2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知函數(shù).求的極大值和極小值.

(2)已知是實數(shù),1和-1是函數(shù)的兩個極值點.

的值;

設(shè)函數(shù)的導(dǎo)函數(shù),求的極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形ABCP,APBC,APAB,AB=BC=AP=2,DAP的中點,E,F,G分別是PC,PD,CB的中點,PCD沿CD折起,使點P在平面ABCD內(nèi)的射影為點D,如圖2

1求證:AP平面EFG;

2求三棱錐P-ABC的體積

查看答案和解析>>

同步練習(xí)冊答案