下列說(shuō)法正確的個(gè)數(shù)是( 。
①若(2x-1)+i=y-(3-y)i,其中x∈R,y∈CIR,I為復(fù)數(shù)集.則必有
2x-1=y
1=-(3-y)

②2+i>1+i
③虛軸上的點(diǎn)表示的數(shù)都是純虛數(shù)
④若一個(gè)數(shù)是實(shí)數(shù),則其虛部不存在.
分析:對(duì)于①利用復(fù)數(shù)相等的條件,直接直接列出方程即可判斷正誤;
對(duì)于②利用復(fù)數(shù)的基本概念,即可判斷正誤;
對(duì)于③通過(guò)復(fù)平面的定義判斷正誤即可;
對(duì)于④利用復(fù)數(shù)的基本概念判斷即可;
解答:解:①若(2x-1)+i=y-(3-y)i,其中x∈R,y∈CIR,I為復(fù)數(shù)集.
令y=bi,則必有
2x-1=-b
1=3-b
,不是
2x-1=y
1=-(3-y)
,所以①不正確.
②2+i>1+i,不正確,復(fù)數(shù)不能比較大。
③虛軸上的點(diǎn)表示的數(shù)都是純虛數(shù),必須除去原點(diǎn),所以③不正確.
④若一個(gè)數(shù)是實(shí)數(shù),則其虛部不存在.不正確,虛部為0,不是不存在.
故選A.
點(diǎn)評(píng):本題是綜合題目,考查復(fù)數(shù)的基本概念,復(fù)數(shù)的基本運(yùn)算,考查基本知識(shí)的靈活運(yùn)用,?碱}型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的個(gè)數(shù)是( 。
①兩直線a,b沒(méi)有公共點(diǎn),那a和b異面  
②空間兩組對(duì)邊分別相等的四邊形是平行四邊形
③兩兩相交的三條線共面    
④有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱
⑤直線有無(wú)數(shù)個(gè)點(diǎn)不在平面內(nèi),則直線與該平面平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用樣本估計(jì)總體,下列說(shuō)法正確的個(gè)數(shù)是( 。
①樣本的概率與實(shí)驗(yàn)次數(shù)有關(guān);
②樣本容量越大,估計(jì)就越精確;
③樣本的標(biāo)準(zhǔn)差可以近似地反映總體的平均水平;
④數(shù)據(jù)的方差越大,說(shuō)明數(shù)據(jù)越不穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的個(gè)數(shù)是( 。
①若(2x-1)+i=y-(3-y)i,其中x∈R,y∈C.則必有
2x-1=y
1=-(3-y)
;
②2+i>1+i;
③若(x2-1)+(x2+3x+2)i是純虛數(shù),則實(shí)數(shù)x=±1;
④若(z1-z2)2+(z2-z3)2=0,則z1=z2=z3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的個(gè)數(shù)是( 。
(1)線性回歸方程y=bx+a必過(guò)(
.
x
.
y
)

(2)在一個(gè)2×2列聯(lián)表中,由計(jì)算得 K2=4.235,則有95%的把握確認(rèn)這兩個(gè)變量間沒(méi)有關(guān)系
(3)復(fù)數(shù)
i2+i3+i4
1-i
=
1
2
-
1
2
i

(4)若隨機(jī)變量ξ~N(2,1),且p(ξ<4)=p,則p(0<ξ<2)=2p-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案