函數(shù)y=x+
1
x+1
(x≥0)的最小值為
 
考點(diǎn):基本不等式
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:將x寫成(x+1)-1,再由基本不等式,可得y的最小值,注意等號成立的條件.
解答: 解:函數(shù)y=x+
1
x+1
=x+1+
1
x+1
-1
由于x≥0,則x+1≥1,
即有y≥2
(x+1)•
1
x+1
-1=1,
當(dāng)且僅當(dāng)x+1=
1
x+1
即x=0時(shí),y取得最小值,且為1.
故答案為:1.
點(diǎn)評:本題考查函數(shù)的最值的求法,考查基本不等式的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2m,1),向量
b
=(1,-8),若
a
b
,則實(shí)數(shù)m的值是( 。
A、-4
B、4
C、
4
3
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-5≤x≤3},B={y|y=a-2x-x2},其中a∈R,如果A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有男生4人女生5人,從中選2名男生1名女生參加數(shù)學(xué)、物理、化學(xué)三科競賽,要求每科均有1人參加,每名學(xué)生只參加一科競賽,則不同的參賽方法有( 。
A、15種B、30種
C、90種D、180種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C所對邊分別為a,b,c,且acosC+
1
2
c=b.
(1)求角A的大小;
(2)若bc=2,求邊長a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)在x=3處可導(dǎo),f′(3)=2,f(3)=-2,則
lim
△x→3
2x-3f(x)
x-3
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1+x)(1-x)10 展開式中x3的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點(diǎn)P(-5,12),則cosα=( 。
A、
5
13
B、-
5
13
C、
12
13
D、-
12
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
n
k=3
Ak=A1∪A2∪A3∪…An,n∈N*,設(shè)集合Ak={y|y=
kx+1
kx
,
1
k
≤x≤1,k=2,3,…,2015},則
2015
k=2
Ak=(  )
A、∅
B、[2,
3
2
2
]
C、{2}
D、[2,
2016
2015
2015
]

查看答案和解析>>

同步練習(xí)冊答案