設(shè)函數(shù)。
(1)當(dāng)a=1時,求的單調(diào)區(qū)間。
(2)若在上的最大值為,求a的值。
【解析】考查函數(shù)導(dǎo)數(shù)運算、利用導(dǎo)數(shù)處理函數(shù)最值等知識。
解:對函數(shù)求導(dǎo)得:,定義域為(0,2)
(1) 單調(diào)性的處理,通過導(dǎo)數(shù)的零點進行穿線判別符號完成。
當(dāng)a=1時,令
當(dāng)為增區(qū)間;當(dāng)為減函數(shù)。
(2) 區(qū)間上的最值問題,通過導(dǎo)數(shù)得到單調(diào)性,結(jié)合極值點和端點的比較得到,確定
待定量a的值。
當(dāng)有最大值,則必不為減函數(shù),且>0,為單調(diào)遞增區(qū)間。
最大值在右端點取到。。
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分高☆考♂資♀源*網(wǎng)12分)
設(shè)函數(shù)。
(1)當(dāng)a=1時,求的單調(diào)區(qū)間。
(2)若在上的最大值為,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省原名校高三下學(xué)期第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)。
(1)當(dāng)a=l時,求函數(shù)的極值;
(2)當(dāng)a2時,討論函數(shù)的單調(diào)性;
(3)若對任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求
實數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省高三上學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)。
(1)當(dāng)a=1時,求的單調(diào)區(qū)間。
(2)若在上的最大值為,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省高三教學(xué)質(zhì)量監(jiān)測理科數(shù)學(xué)卷 題型:解答題
(選修4—5:不等式選講)設(shè)函數(shù)。
(1)當(dāng)a=-5時,求函數(shù)的定義域。
(2)若函數(shù)的定義域為R,求實數(shù)a的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com