已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)的一個焦點為(
5
,0
),離心率為
5
3
.求橢圓C的標(biāo)準(zhǔn)方程.
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由題意可得:c=
5
,
c
a
=
5
3
,又a2=b2+c2,聯(lián)立解出即可.
解答: 解:由題意可得:c=
5
,
c
a
=
5
3
,又a2=b2+c2
聯(lián)立解得a=3,b=2,
∴橢圓C的標(biāo)準(zhǔn)方程為
x2
9
+
y2
4
=1
點評:本題考查了橢圓的標(biāo)準(zhǔn)方及其性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為(0,+∞),并且滿足下列條件:
①f(2)=1; ②f(x,y)=f(x)+f(y); ③當(dāng)x>1時,f(x)>0.
(Ⅰ)求f(1),f(
1
4
)的值;
(Ⅱ) 證明f(x)在(0,+∞)是增函數(shù);
(Ⅲ)解不等式f(2)+f(4-8x)>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是橢圓
x2
4
+
y2
2
=1上的一點,求P到M(m,0)(m>0)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形
(Ⅰ)求證:AC⊥平面PBD;
(Ⅱ)若∠BAD=60°,AD=2,PD=2
2
,AC與BD相交于O,求PA與平面PBD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是R上的奇函數(shù),且當(dāng)x>0時,f(x)=lg(x2-ax+10),a∈R.
(1)若f(1)=1,求f(x)的解析式;
(2)若a=0,不等式f(k•2x)+f(4x+k+1)>0恒成立,求實數(shù)k的取值范圍;
(3)若f(x)的值域為R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
1
2
(x2-2x)
的定義域是
 
,單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{an}中,a1=2,an=an-1+2(n≥2,n∈N*),求和Tn=
1
a1a2
+
1
a2a3
+…+
1
anan+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2+2x-1的值域是(  )
A、[-1,+∞)
B、[-2,+∞)
C、[1,+∞)
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
1
anan+1
,且數(shù)列{bn}的前n項和為Tn.若Tn
5
12
,求n的最小值.

查看答案和解析>>

同步練習(xí)冊答案