精英家教網 > 高中數學 > 題目詳情
將邊長為1的正方形ABCD沿對角線BD折起成直二面角A-BD-C,則在這個直二面角A-BD-C中點A到直線BC的距離是
3
2
3
2
分析:根據題意,先作出表示A到直線BC的距離的線段,再在直角三角形中進行求解即可
解答:解:分別取BD,BC的中點O,E,連接AO,OE,AE
∵ABCD是正方形
∴AO⊥BD
∵A-BD-C是直二面角,平面ABD∩平面BCD=BD
∴AO⊥平面BDC
∴E是BC的中點
∴OE⊥BC
∴AE⊥BC
∴AE表示A到直線BC的距離
∵AB=1,BE=
1
2

∴AE=
3
2

∴A到直線BC的距離為
3
2

故答案為:
3
2
點評:本題考查與二面角有關立體幾何中點線之間距離的計算,考查學生對空間圖形的理解,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

將邊長為1的正方形ABCD沿對角線BD折起,使得點A到點A′的位置,且A′C=1,則折起后二面角A′-DC-B的大。ā 。
A、arctan
2
2
B、
π
4
C、arctan
2
D、
π
3

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網將邊長為1的正方形ABCD沿對角線BD折成直二面角,若點P滿足
BP
=
1
2
BA
-
1
2
BC
+
BD
,則|
BP
|2的值為( 。
A、
3
2
B、2
C、
10-
2
4
D、
9
4

查看答案和解析>>

科目:高中數學 來源: 題型:

將邊長為1的正方形ABCD沿對角線AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱錐D-ABC中,給出下列三個命題:
①面DBC是等邊三角形;  ②AC⊥BD;  ③三棱錐D-ABC的體積是
2
6

其中正確命題的個數為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

將邊長為1的正方形ABCD沿對角線AC對折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為
2
π
3
2
π
3

查看答案和解析>>

同步練習冊答案