圓的標(biāo)準(zhǔn)方程為:(x-a-1)2+(y-b+2)2=r2其圓心坐標(biāo)是(  )
A、(1,-2)
B、(-2,1)
C、(a+1,b-2)
D、(-a-1,-b+2)
考點:圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:利用圓的標(biāo)準(zhǔn)方程的定義求解.
解答: 解:∵圓的標(biāo)準(zhǔn)方程為:(x-a-1)2+(y-b+2)2=r2,
∴其圓心坐標(biāo)為(a+1,b-2).
故選:C.
點評:本題考查圓的圓心坐標(biāo)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意熟練掌握圓的標(biāo)準(zhǔn)方程的概念.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

sin89°cos14°-sin1°cos76°=( 。
A、
6
+
2
4
B、
2
-
6
4
C、
6
-
2
4
D、
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、8
B、
8
3
C、
16
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10個三好學(xué)生名額,分給甲、乙、丙三個班,每班至少一名,共有( 。┓N方法.
A、24B、48C、36D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若a3+a8=24,則S10的值為( 。
A、20B、60C、90D、120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,若橢圓C上恰有8個不同的點P,使得△F1F2P為直角三角形,則橢圓C的離心率的取值范圍是( 。
A、(0,
2
2
B、(0,
2
2
]
C、(
2
2
,1)
D、[
2
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線4x+3y=10和2x-y=10.
(1)直線ax+2y+8=0過兩條直線的交點,求a的值;
(2)過兩條直線的交點,且與直線4x-y+5=0平行的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2|x-a|-a,其中a>0
(1)當(dāng)a=2時,求f(x)在(-∞,2)上的單調(diào)區(qū)間;
(2)討論f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和n個黑球(n為正整數(shù)).現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球,若取出的4個球均為黑球的概率為
1
5
,求
(Ⅰ)n的值;
(Ⅱ)取出的4個球中黑球個數(shù)大于紅球個數(shù)的概率.



查看答案和解析>>

同步練習(xí)冊答案