已知雙曲線的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為60°的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線離心率的取值范圍是( )
A.(1,2]
B.(1,2)
C.[2,+∞)
D.(2,+∞)
【答案】分析:若過(guò)點(diǎn)F且傾斜角為60°的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對(duì)值小于等于漸近線的斜率.根據(jù)這個(gè)結(jié)論可以求出雙曲線離心率的取值范圍.
解答:解:已知雙曲線的右焦點(diǎn)為F,
若過(guò)點(diǎn)F且傾斜角為60°的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),
則該直線的斜率的絕對(duì)值小于等于漸近線的斜率,
,離心率e2=
∴e≥2,故選C
點(diǎn)評(píng):本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時(shí)要注意挖掘隱含條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的右焦點(diǎn)為(5,0),一條漸近線方程為2x-y=0,則此雙曲線的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論:
①當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P,則過(guò)點(diǎn)P且焦點(diǎn)在y軸上的拋物線的標(biāo)準(zhǔn)方程是x2=
4
3
y
;
②已知雙曲線的右焦點(diǎn)為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標(biāo)準(zhǔn)方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的準(zhǔn)線方程為y=-
1
4a

④已知雙曲線
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0).
其中所有正確結(jié)論的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的右焦點(diǎn)為F(3,0),且以直線x=1為右準(zhǔn)線.求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題,其中所有正確命題的序號(hào)為
①②
①②

①當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P(-2,3);
②已知雙曲線的右焦點(diǎn)為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標(biāo)準(zhǔn)方程是
x2
5
-
y2
20
=1

③拋物線y=ax2(a≠0)的焦點(diǎn)坐標(biāo)為(
1
4a
,0
);
④曲線C:
x2
4-k
+
y2
k-1
=1
不可能表示橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的右焦點(diǎn)為F,過(guò)F作雙曲線一條漸近線的垂線,垂足為A,過(guò)A作x軸的垂線,B為垂足,且
OF
=3
OB
(O為原點(diǎn)),則此雙曲線的離心率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案