如果點(diǎn)P在平面區(qū)域
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上,點(diǎn)Q在曲線x2+(y+2)2=1上,那么|PQ|的最小值為(  )
A、
5
-1
B、
4
5
-1
C、2
2
-1
D、
2
-1
分析:先畫出滿足
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
的平面區(qū)域,再把|PQ|的最小值轉(zhuǎn)化為點(diǎn)P到(0,-2)的最小值減去圓的半徑1即可.
解答:精英家教網(wǎng)解:由題可知不等式組確定的區(qū)域?yàn)殛幱安糠职ㄟ吔纾c(diǎn)P到Q的距離最小為到(0,-2)的最小值減去圓的半徑1,
點(diǎn)(0,-2)到直線x-2y+1=0的距離為
|4+1|
5
=
5
;
由圖可知:|PQ|min=
5
-1,
故選A.
點(diǎn)評:本題屬于線性規(guī)劃中的延伸題,對于可行域不要求線性目標(biāo)函數(shù)的最值,而是求可行域內(nèi)的點(diǎn)與(0,-2)之間的距離問題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果點(diǎn)P在平面區(qū)域
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上,點(diǎn)Q在曲線x2+(y+2)2=1上,那么|PQ|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果點(diǎn)P在平面區(qū)域
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上,點(diǎn)Q在曲線x2+(y+2)2=2上,那么|PQ|的最小值為
5
-
2
5
-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果點(diǎn)P在平面區(qū)域
2x-y+2≥0
x+y-2≤0
2y-1≥0
上,點(diǎn)Q在曲線x2+(y+3)2=1上,那么|PQ|的最小值為
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果點(diǎn)P在平面區(qū)域
2x-y+2≥0
x+y-2≤0
y-1≥0
內(nèi),點(diǎn)Q在曲線(x+2)2+y2=
1
4
上,那么|PQ|的最小值為( 。
A、
1
2
B、
13
-1
2
C、
10
-1
2
D、
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果點(diǎn)P在平面區(qū)域
2x-y+2≥0
x+y-2≤0
2y-1≥0
內(nèi),點(diǎn)Q(0,-2),那么|PQ|的最小值為( 。

查看答案和解析>>

同步練習(xí)冊答案