已知函數(shù)f(x)=3sinωx(ω>0)在區(qū)間[-
π
3
π
4
]上的最大值是3,則ω的最小值為( 。
A、
2
3
B、
3
2
C、2
D、4
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:由題意可得ω的最小值應(yīng)滿足ω×
π
4
=
π
2
,由此求得ω的值,即為所求.
解答: 解:函數(shù)f(x)=3sinωx(ω>0)在區(qū)間[-
π
3
π
4
]上的最大值是3,則ω的最小值應(yīng)滿足ω×
π
4
=
π
2
,
求得ω=2,
故選:C.
點(diǎn)評(píng):本題主要考查正弦函數(shù)的圖象、正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線y=kx+1被曲線
x2
3
+
y2
4
=1截得的線段長(zhǎng)度最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的數(shù)的個(gè)數(shù)是( 。
A、7B、6C、5D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題“p:?x>0,lnx<x”,則¬p為( 。
A、?x∈R,lnx≥x
B、?x>0,lnx≥x
C、?x∈R,lnx<x
D、?x>0,lnx<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義A-B={x|x∈A且x∉B},若A={2,4,6,8,10},B={1,4,8},則A-B=( 。
A、{4,8}
B、{1,2,6,10}
C、{1}
D、{2,6,10}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A1,A2,A3,A4是平面直角坐標(biāo)系中兩兩不同的四點(diǎn),若
A1A3
A1A2
(λ∈R),
A1A4
A1A2
(μ∈R),且
1
λ
+
1
μ
=2,則稱A3,A4調(diào)和分割A(yù)1,A2,已知平面上的點(diǎn)C,D調(diào)和分割點(diǎn)A,B,則下面說法正確的是( 。
A、C可能是線段AB的中點(diǎn)
B、D可能是線段AB的中點(diǎn)
C、C、D可能同時(shí)在線段AB上
D、C、D不可能同時(shí)在線段AB的延長(zhǎng)線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c成等差數(shù)列,求證:a2-bc,b2-ac,c2-ab是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場(chǎng)將進(jìn)貨單價(jià)為40元的商品按50元一個(gè)出售時(shí),能賣出500個(gè),已知這種商品每漲價(jià)一元,其銷售量就減少10個(gè),為得到最大利潤(rùn),銷售價(jià)應(yīng)定為多少元?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)S={x|x是平行四邊形或梯形},A={x|x是平行四邊形},B={x|x是菱形},C={x|x是矩形},求B∪C,∁AB,∁SA.

查看答案和解析>>

同步練習(xí)冊(cè)答案