11.設(shè)定義在R上的偶函數(shù)f(x)在區(qū)間(-∞,0]上單調(diào)遞減,若f(1-m)<f(m),則實(shí)數(shù)m的取值范圍是($\frac{1}{2}$,+∞).

分析 根據(jù)題意,結(jié)合函數(shù)的奇偶性與單調(diào)性分析可得其在區(qū)間[0,+∞)上單調(diào)遞增,進(jìn)而可以將f(1-m)<f(m)轉(zhuǎn)化為|1-m|<|m|,解可得m的取值范圍,即可得答案.

解答 解:根據(jù)題意,函數(shù)f(x)為偶函數(shù)且在區(qū)間(-∞,0]上單調(diào)遞減,
則函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,
若f(1-m)<f(m),由函數(shù)為偶函數(shù),可得f(|1-m|)<f(|m|),
又由函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,
則|1-m|<|m|,
解可得:m>$\frac{1}{2}$;
則實(shí)數(shù)m的取值范圍為:($\frac{1}{2}$,+∞);
故答案為:($\frac{1}{2}$,+∞).

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性與單調(diào)性的綜合運(yùn)用,關(guān)鍵是將f(1-m)<f(m)轉(zhuǎn)化為|1-m|<|m|.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖所示,是一個(gè)空間幾何體的三視圖,且這個(gè)空間幾何體的所有頂點(diǎn)都在同一個(gè)球面上,則這個(gè)球的體積是( 。
A.$\frac{49}{9}π$B.$\frac{{28\sqrt{21}}}{27}π$C.$\frac{28}{3}π$D.$\frac{{28\sqrt{7}}}{9}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知a,b是兩個(gè)不相等的實(shí)數(shù),集合A={a2-4a,-1},B={b2-4b+1,-2},若映射f:x→x表示將集合A中的元素x映射到集合B中仍然為x,則a+b等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=xm-$\frac{4}{x}$,且f(4)=3.
(1)求m的值;
(2)求證:f(x)是奇函數(shù);
(3)若不等式f(x)-a>0在區(qū)間(1,∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0.
(1)若直線l過(guò)點(diǎn)P且與圓心C的距離為1,求直線l的方程.
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過(guò)點(diǎn)P(2,0)的直線l2垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若函數(shù)f(x)=x|x-a|在[2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知$\overrightarrow a=({1,2,3}),\overrightarrow b=({-1,1,x})$,且$\overrightarrow a⊥\overrightarrow b$,則x的值為( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.過(guò)點(diǎn)P(1,3)的動(dòng)直線與拋物線y=x2交于A,B兩點(diǎn),在A,B兩點(diǎn)處的切線分別為l1、l2,若l1和l2交于點(diǎn)Q,則圓x2+(y-2)2=4上的點(diǎn)與動(dòng)點(diǎn)Q距離的最小值為$\sqrt{5}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=Asin(ωx+$\frac{π}{3}$)(A>0,ω>0)最大值為2,周期為π.
(1)求實(shí)數(shù)A,ω的值;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案