某園林局對1000株樹木的生長情況進行調查,其中杉樹600株,槐樹400株.現(xiàn)用分層抽樣方法從這1000株樹木中隨機抽取100株,杉樹與槐樹的樹干周長(單位:cm)的抽查結果如下表:
樹干周長(單位:cm)[30,40)[40,50)[50,60)[60,70)
杉樹61921x
槐樹420y6
(1)求x,y值及估計槐樹樹干周長的眾數(shù);
(2)如果杉樹的樹干周長超過60cm就可以砍伐,請估計該片園林可以砍伐的杉樹有多少株?
(3)樹干周長在30cm到40cm之間的4株槐樹有1株患蟲害,現(xiàn)要對這4株樹逐一進行排查直至找出患蟲害的樹木為止.求排查的樹木恰好為2株的概率.
考點:古典概型及其概率計算公式,眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計
分析:(1)首先求出樣本中槐樹和杉樹的株數(shù),繼而求出x,y的值,根據(jù)的眾數(shù)的定義可以輕松求出.
(2)根據(jù)用樣本來估計總體的方法求得需要砍殺的杉樹的株數(shù).
(3)一一列舉求取滿足條件的基本事件,找到滿足有蟲的那株的基本事件,根據(jù)概率公式計算即可.
解答: 解 (1)按分層抽樣方法隨機抽取100株,可得槐樹為40株,杉樹為60株,
∴x=60-6-19-21=14,y=40-4-20-6=10.
估計槐樹樹干周長的眾數(shù)為45cm.
(2)
14
60
×600=140,
估計該片園林可以砍伐的杉樹有140株.
(3)設4株樹為B1,B2,B3,D,設D為有蟲害的那株,
基本事件為(D),(B1,D),(B2,D),(B3,D),(B1,B2,D),(B1,B3,D),(B2,B1,D),(B2,B3,D),(B3,B1,D),(B3,B2,D),
(B1,B2,B3),(B1,B3,B2),(B2,B1,B3),(B2,B3,B1),(B3,B1,B2),(B3,B2,B1)共16種,
設事件A:排查的樹木恰好為2株,事件A包含(B1,D),(B2,D),(B3,D)3種,
∴P(A)=
3
16
點評:本題主要考查了分成抽樣、眾數(shù)、古典概型的概率的求法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=loga(3x-2)(a>0,a≠1)的圖過定點A,則A點坐標是( 。
A、(0,
2
3
B、(
2
3
,0)
C、(1,0)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和Sn=n2+2n(n∈N*).
(1)寫出數(shù)列的前三項a1,a2,a3
(2)求通項an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學參加知識競賽.需回答3個問題,規(guī)則如下:每題答對得100分,答錯得-100分,假設這名同學每題答對的概率均為0.8,且各題答對與否相互沒有影響.
(1)求這名同學回答這三個問題的總得分X的概率分布列
(2)求這名同學回答這三個問題的總得分X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是首項a1=2且公比q≠1的等比數(shù)列,a1,2a2,3a3依次成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記數(shù)列{an}的前n項和為Sn,若不等式
Sn-1
Sn+1-1
>λ對任意n∈N*恒成立,求實數(shù)λ的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知AC⊥平面CDE,BD∥AC,△ECD為等邊三角形,F(xiàn)為ED邊上的中點,且CD=BD=2AC=2,
(1)求證:CF∥面ABE; 
(2)求證:面ABE⊥平面BDE;
(3)求該幾何體ABECD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,E、F、M、N分別是A1B1、BC、C1D1、B1C1的中點.
(Ⅰ)用向量方法求直線EF與MN的夾角;
(Ⅱ)求二面角N-EF-M的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

經(jīng)統(tǒng)計,某校學生上學路程所需要時間全部介于0與50之間(單位:分鐘),現(xiàn)從在校學生中隨機抽取100人,按上學所需時間分組如下:第1組(0,10],第2組(10,20],第3組(20,30],第4組(30,40],第5組(40,50],得到如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)圖中數(shù)據(jù)求a的值;
(Ⅱ)若從第3,4,5組中用分層柚樣的方法抽取6人參與交通安全問卷調查,應從這三組中各抽取幾人?
(Ⅲ)在(Ⅱ)的條件下,若從這6人中隨機抽取2人參加交通安全宣傳活動,求第4組至少有1人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用分析法證明:若a>b>0,m>0,則
a
b
a+m
b+m

查看答案和解析>>

同步練習冊答案