設{an}是公差不為0的等差數(shù)列,a1=2且a1,a3,a6成等比數(shù)列,則{an}的前n項和Sn=( )
A.
B.
C.
D.n2+n
【答案】分析:設數(shù)列{an}的公差為d,由題意得(2+2d)2=2•(2+5d),解得或d=0(舍去),由此可求出數(shù)列{an}的前n項和.
解答:解:設數(shù)列{an}的公差為d,
則根據(jù)題意得(2+2d)2=2•(2+5d),
解得或d=0(舍去),
所以數(shù)列{an}的前n項和
故選A.
點評:本題考查數(shù)列的性質和應用,解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設{an}是公差不為0的等差數(shù)列,a1=2且a1,a3,a6成等比數(shù)列,則{an}的前n項和Sn=( 。
A、
n2
4
+
7n
4
B、
n2
3
+
5n
3
C、
n2
2
+
3n
4
D、n2+n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是公差不為0的等差數(shù)列,a1=2且a1,a3,a6成等比數(shù)列,則{an}的通項公式為an=
n+3
2
n+3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•佛山一模)設{an}是公差不為0的等差數(shù)列,a1=2且a1,a3,a6成等比數(shù)列,則{an}的前5項和S5=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是公差不為零的等差數(shù)列,Sn為其前n項和,滿足S6=0,S7=7,求數(shù)列{an}的通項公式及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是公差不為0的等差數(shù)列,a1=2,且a1,a3,a6成等比數(shù)列,則a5的值為
4
4

查看答案和解析>>

同步練習冊答案