精英家教網 > 高中數學 > 題目詳情

【題目】為調查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調查了500位老年人,結果如下:

需要

40

30

不需要

160

270

(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例。

(2)能否在犯錯誤的概率不超過百分之一的前提下認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?

附:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(1)14%;(2)在犯錯誤的概率不超過百分之一的前提下認為該地區(qū)的老年人是否需要幫助與性別有關.

【解析】

(1)由頻率估計概率,求出需要志愿者提供幫助的老人頻率即可;

(2)將數據代入公式,求出,與6.635作比較,若大于6.635則可以.

(1)調查的500名老年人中有70位需要志愿者提供幫助,因此該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例的估計值為%=14%

(2),由于9.967>6.635,所以可以在犯錯誤的概率不超過百分之一的前提下認為該地區(qū)的老年人是否需要幫助與性別有關。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】2020年寒假,因為新冠疫情全體學生只能在家進行網上學習,為了研究學生網上學習的情況,某學校隨機抽取名學生對線上教學進行調查,其中男生與女生的人數之比為,抽取的學生中男生有人對線上教學滿意,女生中有名表示對線上教學不滿意.

1)完成列聯(lián)表,并回答能否有的把握認為對線上教學是否滿意 與性別有關;

態(tài)度

性別

滿意

不滿意

合計

男生

女生

合計

100

2)從被調查的對線上教學滿意的學生中,利用分層抽樣抽取名學生,再在這名學生中抽取名學生,作線上學習的經驗介紹,求其中抽取一名男生與一名女生的概率.

附:.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“黃梅時節(jié)家家雨”“梅雨如煙暝村樹”“梅雨暫收斜照明”江南梅雨的點點滴滴都流潤著濃洌的詩情每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南Q鎮(zhèn)年梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:

“梅實初黃暮雨深”假設每年的梅雨天氣相互獨立,求Q鎮(zhèn)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率;

“江南梅雨無限愁”在Q鎮(zhèn)承包了20畝土地種植楊梅的老李也在犯愁,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產量與降雨量之間的關系如下面統(tǒng)計表所示,又知乙品種楊梅的單位利潤為,請你幫助老李排解憂愁,他來年應該種植哪個品種的楊梅可以使總利潤萬元的期望更大?需說明理由

降雨量

畝產量

500

700

600

400

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數上是單調函數,則a的取值范圍是(

A.B.

C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種產品的廣告費支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下的對應數據:

x

2

4

5

6

8

y

30

40

60

50

70

1)畫出散點圖;

2)求y關于x的線性回歸方程.

3)如果廣告費支出為一千萬元,預測銷售額大約為多少百萬元?

參考公式用最小二乘法求線性回歸方程系數公式:,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為實數,函數.

(1)若是函數的一個極值點,求實數的取值;

(2)設,若,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知甲、乙兩名工人在同樣條件下每天各生產100件產品,且每生產1件正品可獲利20元,生產1件次品損失30元,甲、乙兩名工人100天中出現次品件數的情況如表所示.

甲每天生產的次品數/件

0

1

2

3

4

對應的天數/天

40

20

20

10

10

乙每天生產的次品數/件

0

1

2

3

對應的天數/天

30

25

25

20

(1)將甲每天生產的次品數記為(單位:件),日利潤記為(單位:元),寫出的函數關系式;

(2)按這100天統(tǒng)計的數據,分別求甲、乙兩名工人的平均日利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知平面直角坐標系內的動點P到直線的距離與到點的距離比為

1)求動點P所在曲線E的方程;

2)設點Q為曲線E軸正半軸的交點,過坐標原點O作直線,與曲線E相交于異于點的不同兩點,點C滿足,直線分別與以C為圓心,為半徑的圓相交于點A和點B,求△QAC與△QBC的面積之比的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求不等式的解集;

(2)若不等式對任意的恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案