6.定義在R上的可導(dǎo)函數(shù)f(x),其導(dǎo)數(shù)為f′(x),則“f′(x)為偶函數(shù)”是“f(x)為奇函數(shù)”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義以及函數(shù)的奇偶性判斷即可.

解答 解:若f(x)是奇函數(shù),則其圖象關(guān)于原點對稱,
f′(x)表示圖象增減變化情況,應(yīng)關(guān)于y軸對稱,
所以f′(x)是偶函數(shù).
反之,若f′(x)是偶函數(shù),如f′(x)=3x2,則f(x)=x3+1滿足此條件但不是奇函數(shù).
所以“f′(x)為偶函數(shù)”是“f(x)為奇函數(shù)”的必要不充分條件,
故選B.

點評 本題考查了充分必要條件,考查函數(shù)的奇偶性問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}滿足:a1=1且an+1+$\frac{1}{{1+{a_n}}}$=0(n∈N*),則a2018=(  )
A.2$B.-$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)中,既是奇函數(shù),又在[0,1]上是增函數(shù)的是( 。
A.y=|x|B.y=x2+1C.y=x3D.y=sinx(x∈[0,$\frac{π}{2}$])

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)偶函數(shù)f(x)的定義域為R,當(dāng)x∈[0,+∞)時,f(x)是增函數(shù),則f(-2),f(π),f(-3)的大小關(guān)系是( 。
A.f(-2)<f(π)<f(-3)B.f(π)<f(-2)<f(-3)C.f(-2)<f(-3)<f(π)D.f(-3)<f(-2)<f(π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=|ln(x-1)|,若f(a)=f(b),則a+2b的取值范圍為( 。
A.(4,+∞)B.$[3+2\sqrt{2}\;\;,\;\;+∞)$C.[6,+∞)D.$(4\;\;,\;\;3+2\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$|{\overrightarrow a}|=4,|{\overrightarrow b}|=8,\overrightarrow a$與$\overrightarrow b$的夾角為60°,則$|{2\overrightarrow a+\overrightarrow b}|$=(  )
A.$8\sqrt{3}$B.$6\sqrt{3}$C.5D.$\sqrt{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)是R上的奇函數(shù),且當(dāng)x∈(0,+∞)時,f(x)=x(1+x3)-1,求f(x)在R上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=x-lnx的單調(diào)遞減區(qū)間是( 。
A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知下列四個命題:p1:若函數(shù)$f(x)=\left\{\begin{array}{l}a{x^2}+1,x≥0\\(a+2){e^{ax}},x<0\end{array}\right.$為R上的單調(diào)函數(shù),則實數(shù)a的取值范圍是(0,+∞);p2:若f(x)=2x-2-x,則?x∈R,f(-x)=-f(x);p3:若$f(x)=x+\frac{1}{x+1}$,則?x0∈(0,+∞),f(x0)=1;p4:若函數(shù)f(x)=xlnx-ax2有兩個極值點,則實數(shù)a的取值范圍是$0<a<\frac{1}{2}$,其中真命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案