在直三棱柱中,,,異面直線所成的角等于,設(shè)

(1)求的值;
(2)求平面與平面所成的銳二面角的大。
(1); (2).

試題分析:由于是直三棱柱,且底面是直角三角形,便于建立空間直角坐標(biāo)系.
建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用向量的夾角公式列方程,求出的值.
在(1)的基礎(chǔ)上,確定的坐標(biāo),設(shè)出平面的法向量與平面的法向量,
根據(jù)向量垂直的條件求出法向量,最后用向量的夾角公式求出,這就是所求銳二面角的余弦值.
試題解析:(1)建立如圖所示的空間直角坐標(biāo)系,則,,,)                                  1分

 ∴       3分
∵異面直線所成的角
 即               5分
,所以                                    6分
(2)設(shè)平面的一個(gè)法向量為,則
,,即

,不妨取                          8分
同理得平面的一個(gè)法向量                10分
設(shè)的夾角為,則      12分
                                           13分
∴平面與平面所成的銳二面角的大小為    14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱中,平面側(cè)面,且
(1) 求證:;
(2) 若直線與平面所成的角為,求銳二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求直線B1C1與平面A1BC1所成角的正弦值;
(2)在線段BC1上確定一點(diǎn)D,使得AD⊥A1B,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中點(diǎn).

(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求直線DH與平面所成角的正弦值;
(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知三棱柱的側(cè)棱與底面邊長都相等,在底面上的射影為的中點(diǎn),則異面直線所成的角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

空間四邊形ABCD中,AD=BC=2,E,F分別是AB,CD的中點(diǎn),EF=,則異面直線AD,BC所成的角為(     )
A.30° B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,M、N分別是BB1和B1C1的中點(diǎn),則直線AM與CN所成角的余弦值等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正四棱柱中,,則異面直線所成角的余弦值為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在長方體ABCD—A1B1C1D1中,AB=3,AD=4,AA1=5,則直線AC1與平面ABCD所成角的大小為         

查看答案和解析>>

同步練習(xí)冊答案