已知點G(5,4),圓C1:(x-1)2+(x-4)2=25,過點G的動直線l與圓C1相交于E、F兩點,線段EF的中點為C.
(1)求點C的軌跡C2的方程;
(2)若過點A(1,0)的直線l1與C2相交于P、Q兩點,線段PQ的中點為M;又l1與l2:x+2y+2=0的交點為N,求證|AM|•|AN|為定值.
考點:軌跡方程,兩條直線的交點坐標
專題:綜合題,直線與圓
分析:(1)利用
C1C
CG
=0,即可求點C的軌跡C2的方程;
(2)分別聯(lián)立相應(yīng)方程,求得M,N的坐標,再求
AM
AN
解答: (1)解:圓C1:(x-1)2+(x-4)2=25,圓心C1(1,4),半徑為5,
設(shè)C(x,y),則
C1C
=(x-1,y-4),
CG
=(5-x,4-y),
C1C
CG
=0,
∴(x-1)(5-x)+(y-4)(4-y)=0,即:(x-3)2+(y-4)2=4,
∴點C的軌跡C2的方程為:(x-3)2+(y-4)2=4;
(2)證明:直線與圓相交,斜率必定存在,且不為0,可設(shè)直線方程為kx-y-k=0
與x+2y+2=0聯(lián)立可得N(
2k-2
2k+1
,-
3k
2k+1
),
又直線CM與l1垂直,
y=kx-k
y-4=-
1
k
(x-3)
得M(
k2+4k+3
1+k2
4k2+2k
1+k2
).
∴|AM|•|AN|=
AM
AN
=
2|2k+1|
1+k2
1+k2
3
1+k2
|2k+1|
=6為定值.
點評:本題主要考查直線與圓的位置關(guān)系以及直線與直線的交點,考查向量知識的運用,屬于中檔題..
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0,m∈R,當(dāng)直線l被圓C截得的弦長最短時的m的值是(  )
A、-
3
4
B、-
1
3
C、-
4
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若ab>0,則下列四個等式:
①lg(ab)=lga+lgb
②lg(
a
b
)=lga-lgb
1
2
lg(
a
b
2=lg(
a
b

④lg(ab)=
1
logab10
中正確等式的符號是( 。
A、①②③④B、①②C、③④D、③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,Sn是數(shù)列{an}的前n項和,a1+a6+a11=4π,則sin(S11)的值為( 。
A、
3
2
B、±
3
2
C、
1
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=kx2-kx+2
(Ⅰ)若x∈R時,f(x)>0恒成立,求實數(shù)k的取值范圍;
(Ⅱ)若k∈R,解關(guān)于x的不等式f(x)≤2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題,其中正確的命題有
 
.(填所有正確的序號)
(1)命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
(2)若f(x)=ax2+2x+1只有一個零點,則a=1;
(3)命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”;
(4)對于任意實數(shù)x,有f(-x)=f(x),g(-x)=g(x),且當(dāng)x>0時,f′(x)>0,g′(x)>0,則當(dāng)x<0時,f′(x)>g′(x);
(5)在△ABC中,“A>45°”是“sinA>
2
2
”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)+2f(3-x)=x2,求f(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在定義域內(nèi)存在實數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)有“飄移點”x0
(1)函數(shù)f(x)=
1
x
是否有“飄移點”?請說明理由;
(2)證明函數(shù)f(x)=x2+2x在(0,1)上有“飄移點”;
(3)若函數(shù)f(x)=lg(
a
x2+1
)在(0,+∞)上有“飄移點”,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x+sinx,若f(a)=3,則f(-a)的值( 。
A、aB、-aC、3D、-3

查看答案和解析>>

同步練習(xí)冊答案