【題目】命題p:方程x2+mx+1=0有兩個不等的正實數(shù)根,命題q:方程4x2+4(m+2)x+1=0無實數(shù)根.若“p或q”為真命題,求m的取值范圍.

【答案】解:“p或q”為真命題,則p為真命題,或q為真命題.
當p為真命題時,則 ,得m<﹣2;
當q為真命題時,則△=16(m+2)2﹣16<0,得﹣3<m<﹣1
∴“p或q”為真命題時,m<﹣1
【解析】“p或q”為真命題,即p和q中至少有一個真命題,分別求出p和q為真命題時對應的范圍,再求并集.
命題p:方程x2+mx+1=0有兩個不等的正實數(shù)根 ,命題q:方程4x2+4(m+2)x+1=0無實數(shù)根△<0.
【考點精析】通過靈活運用復合命題的真假,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某互聯(lián)網(wǎng)理財平臺為增加平臺活躍度決定舉行邀請好友拿獎勵活動,規(guī)則是每邀請一位好友在該平臺注冊,并購買至少1萬元的12月定期,邀請人可獲得現(xiàn)金及紅包獎勵,現(xiàn)金獎勵為被邀請人理財金額的,且每邀請一位最高現(xiàn)金獎勵為300元,紅包獎勵為每邀請一位獎勵50元.假設甲邀請到乙、丙兩人,且乙、丙兩人同意在該平臺注冊,并進行理財,乙、丙兩人分別購買1萬元、2萬元、3萬元的12月定期的概率如下表:

理財金額

萬元

萬元

萬元

乙理財相應金額的概率

丙理財相應金額的概率

(1)求乙、丙理財金額之和不少于5萬元的概率;

(2)若甲獲得獎勵為元,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)若,求曲線在點處的切線方程;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等差數(shù)列{an}的前n項和為Sn , 且滿足 ,S7=56. (Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)若數(shù)列{bn}滿足b1=a1且bn+1﹣bn=an+1 , 求數(shù)列 的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設O為坐標原點,曲線x2+y2+2x﹣6y+1=0上有兩點P、Q,滿足關于直線x+my+4=0對稱,又滿足 =0.
(1)求m的值;
(2)求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向左平移 個單位后,再將圖象上各點的橫坐標伸長到原來的2倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求g(x)的最大值及取得最大值時的x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若兩條異面直線所成的角為90°,則稱這對異面直線為“理想異面直線對”,在連接正方體各頂點的所有直線中,“理想異面直線對”的對數(shù)為(
A.24
B.48
C.72
D.78

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一艘船在航行過程中發(fā)現(xiàn)前方的河道上有一座圓拱橋.在正常水位時,拱橋最高點距水面8m,拱橋內(nèi)水面寬32m,船只在水面以上部分高6.5m,船頂部寬8m,故通行無阻,如圖所示.

(1)建立適當?shù)钠矫嬷苯亲鴺讼担笳K粫r圓弧所在的圓的方程;
(2)近日水位暴漲了2m,船已經(jīng)不能通過橋洞了.船員必須加重船載,降低船身在水面以上的高度,試問:船身至少降低多少米才能通過橋洞?(精確到0.1m,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設雙曲線 的離心率e=2,右焦點為F(c,0),方程ax2+bx﹣c=0的兩個實根分別為x1和x2 , 則點P(x1 , x2) 滿足(
A.必在圓x2+y2=2內(nèi)
B.必在圓x2+y2=2外
C.必在圓x2+y2=2上
D.以上三種情形都有可能

查看答案和解析>>

同步練習冊答案