分析 (1)求函數(shù)f(x)的導(dǎo)數(shù),令導(dǎo)數(shù)等于零,解方程,再求出函數(shù)f(x)的導(dǎo)數(shù)和駐點(diǎn),然后列表討論,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若在區(qū)間(0,e]上存在一點(diǎn)x0,使得f(x0)<0成立,其充要條件是f(x)在區(qū)間(0,e]上的最小值小于0即可.利用導(dǎo)數(shù)研究函數(shù)在閉區(qū)(0,e]上的最小值,先求出導(dǎo)函數(shù)f'(x),然后討論研究函數(shù)在(0,e]上的單調(diào)性,將f(x)的各極值與其端點(diǎn)的函數(shù)值比較,其中最小的一個就是最小值.
解答 解:(1)因?yàn)閒′(x)=-$\frac{1}{{x}^{2}}$+$\frac{a}{x}$=$\frac{ax-1}{{x}^{2}}$,(2分)
當(dāng)a=1,f′(x)=$\frac{x-1}{{x}^{2}}$,
令f'(x)=0,得x=1,(3分)
又f(x)的定義域?yàn)椋?,+∞),f'(x),f(x)隨x的變化情況如下表:
x | (0,1) | 1 | (1,+∞) |
f'(x) | - | 0 | + |
f(x) | ↘ | 極小值 | ↗ |
x | (0,$\frac{1}{a}$) | $\frac{1}{a}$ | ($\frac{1}{a}$,e) |
f′(x) | - | 0 | + |
f(x) | ↘ | 極小值 | ↗ |
點(diǎn)評 本題主要考查導(dǎo)數(shù)的幾何意義以及利用導(dǎo)數(shù)求函數(shù)的最值問題,考查學(xué)生的計(jì)算能力,綜合性較強(qiáng),運(yùn)算量較大,有一定的難度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com