【題目】已知函數(shù)= .
(1)是否存在實(shí)數(shù)使函數(shù)是奇函數(shù)?并說明理由;
(2)在(1)的條件下,當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)存在滿足題意.(2)
【解析】試題分析:(1)由=得=,可得a=1;(2)利用函數(shù)單調(diào)性的定義證明函數(shù)在上是增函數(shù),則原不等式等價(jià)于= ,即,當(dāng)時(shí)恒成立,設(shè)=,再利用函數(shù)單調(diào)性的定義證明在上是減函數(shù),在上是增函數(shù),即可求出求值,即可得出結(jié)論.
試題解析:(1)當(dāng)函數(shù)是奇函數(shù),由得, =,
解得.
(2)函數(shù),任取,設(shè)
則==,
因?yàn)楹瘮?shù)在上是增函數(shù),且所以,
又,所以,即,
所以函數(shù)在上是增函數(shù),因?yàn)?/span>是奇函數(shù),
從而不等式等價(jià)于= ,
因?yàn)楹瘮?shù)在上是增函數(shù),所以,所以當(dāng)時(shí)恒成立.
設(shè),任取,且則==,
當(dāng)且時(shí), ,
所以,所以在上是減函數(shù);
當(dāng)且時(shí), ,
所以,所以在上是增函數(shù),所以= =,
即,所以的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次,某同學(xué)在A處的命中率為0.25,在B處的命中率為0.8,該同學(xué)選擇先在A處投一球,以后都在B處投,用X表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分.
(1)求該同學(xué)投籃3次的概率;
(2)求隨機(jī)變量X的數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校某研究性學(xué)習(xí)小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽課時(shí)間x(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)x∈(0,12]時(shí),圖象是二次函數(shù)圖象的一部分,其中頂點(diǎn)A(10,80),過點(diǎn)B(12,78);當(dāng)x∈[12,40]時(shí),圖象是線段BC,其中C(40,50).根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時(shí),學(xué)習(xí)效果最佳.
(1)試求y=f(x)的函數(shù)關(guān)系式;
(2)教師在什么時(shí)段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1過點(diǎn)A(0,1),l2過點(diǎn)B(5,0),如果l1∥l2,且l1與l2間的距離為5,求l1、l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2+bx,其中函數(shù)g(x)的圖象在點(diǎn)(1,g(1))處的切線平行于x軸.
(1)確定a與b的關(guān)系;
(2)若a≥0,試討論函數(shù)g(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C:x2+y2-2x-4y+m=0
(1)當(dāng)m為何值時(shí),曲線C表示圓;
(2)若曲線C與直線x+2y-4=0交于M、N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn)),求m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)證明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校一個(gè)校園景觀的主題為“托起明天的太陽”,其主體是一個(gè)半徑為5米的球體,需設(shè)計(jì)一個(gè)透明的支撐物將其托起,該支撐物為等邊圓柱形的側(cè)面,厚度忽略不計(jì).軸截面如圖所示,設(shè).(注:底面直徑和高相等的圓柱叫做等邊圓柱.)
(1)用表示圓柱的高;
(2)實(shí)踐表明,當(dāng)球心和圓柱底面圓周上的點(diǎn)的距離達(dá)到最大時(shí),景觀的觀賞效
果最佳,求此時(shí)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com