【題目】一個(gè)幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積是cm3 , 該幾何體的表面積是cm2

【答案】6;
【解析】解:根據(jù)幾何體的三視圖得:該幾何體是一個(gè)底面為直角梯形的四棱柱,
其底面是正視圖中的直角梯形,上底為1cm,下底為2cm,高為2cm,
由側(cè)視圖知四棱柱的高為2cm,
所以該幾何體的體積V= =6(cm3),
由正視圖可知直角梯形斜腰是 ,
則該幾何體的表面積S表面積=2× +
= (cm2),
故答案為:6;
根據(jù)幾何體的三視圖得該幾何體是一個(gè)底面為直角梯形的四棱柱,由三視圖求出幾何元素的長(zhǎng)度,由梯形的面積公式、柱體的體積公式求出該幾何體的體積,由四棱柱的各個(gè)面的長(zhǎng)度求出幾何體的表面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(20)(本小題滿分13分)
已知函數(shù),,其中是自然對(duì)數(shù)的底數(shù).
)求曲線在點(diǎn)處的切線方程;
)令,討論的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在四面體ABCD中,E,F(xiàn)分別是AC,BD的中點(diǎn),若AB=2,CD=4,EF⊥AB,則EF與CD所成的角的度數(shù)為(
A.90°
B.45°
C.60°
D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,2,在Rt△ABC中,AB=BC=4,點(diǎn)E在線段AB上,過(guò)點(diǎn)E作交AC于點(diǎn)F,將△AEF沿EF折起到△PEF的位置(點(diǎn)A與P重合),使得∠PEB=60°.

(1)求證:EF⊥PB;
(2)試問(wèn):當(dāng)點(diǎn)E在何處時(shí),四棱錐P﹣EFCB的側(cè)面的面積最大?并求此時(shí)四棱錐P﹣EFCB的體積及直線PC與平面EFCB所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,有如下兩個(gè)命題:q:若m⊥α,n⊥β且m∥n,則α∥β;q:若m∥α,n∥β且m∥n,則α∥β.(
A.命題q,p都正確
B.命題p正確,命題q不正確
C.命題q,p都不正確
D.命題q不正確,命題p正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)Pi(xi , yi)在直線li:aix+biy=ci上,若ai+bi=ici(i=1,2),且|P1P2|≥ 恒成立,則 + =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,AB=AC=2PA=2,∠PAB=∠PAC=∠BAC=
(Ⅰ) 證明:AP⊥BC;
(Ⅱ)求三棱錐P﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是計(jì)算1+ + +…+ 的值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填的是(

A.i>10
B.i<10
C.i>20
D.i<20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如圖:
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);
(Ⅲ)從成績(jī)?cè)赱50,70)的學(xué)生任選2人,求此2人的成績(jī)都在[60,70)中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案