已知函數(shù),其中常數(shù)

(1)求的單調(diào)區(qū)間;

(2)如果函數(shù)在公共定義域D上,滿足,那么就稱 為的“和諧函數(shù)”.設(shè),求證:當(dāng)時,在區(qū)間上,函數(shù)的“和諧函數(shù)”有無窮多個.

 

【答案】

(1),的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是    

,單調(diào)遞增區(qū)間是  ,,單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是  

(2)作差構(gòu)造新函數(shù)證明.

【解析】

試題分析:(1) ,常數(shù)

,則,                 

①當(dāng)時,,

在區(qū)間上,;在區(qū)間,

的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是           

②當(dāng)時,,故的單調(diào)遞增區(qū)間是         

③當(dāng)時,,

在區(qū)間上,;在區(qū)間

的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是        

(2)令

,則           

因為,所以,且

從而在區(qū)間上,,即上單調(diào)遞減       

所以               

,所以,即       

設(shè),則

所以在區(qū)間上,函數(shù)的“和諧函數(shù)”有無窮多個   

考點:類比推理;函數(shù)的定義域及其求法;函數(shù)的值域;函數(shù)單調(diào)性的判斷與證明;函數(shù)單調(diào)性的性質(zhì).

點評:本題主要以新定義為載體,綜合考查了函數(shù)的單調(diào)性、函數(shù)的最值方程的根的情況、二次函數(shù)的最值的求解,考查了利用已學(xué)知識解決新問題的能力,考查了推理運算的能力,本題綜合性較強.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù)(其中常數(shù)),是奇函數(shù)。

    (Ⅰ)求的表達(dá)式;

  (Ⅱ)討論的單調(diào)性,并求在區(qū)間上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),其中常數(shù)ω>0.

(1)令ω=1,判斷函數(shù)的奇偶性,并說明理由;

(2)令ω=2,將函數(shù)y=f(x)的圖像向左平移個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖像.對任意a∈R,求y=g(x)在區(qū)間[a,a+10π]上零點個數(shù)的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省莆田一中高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)(其中常數(shù)a,b∈R),
(Ⅰ)當(dāng)a=1時,若函數(shù)f(x)是奇函數(shù),求f(x)的極值點;
(Ⅱ)若a≠0,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)時,求函數(shù)g(x)在[0,a]上的最小值h(a),并探索:是否存在滿足條件的實數(shù)a,使得對任意的x∈R,f(x)>h(a)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市招生考試?yán)砜茢?shù)學(xué) 題型:解答題

(12分)已知函數(shù),其中常數(shù)滿足。

⑴ 若,判斷函數(shù)的單調(diào)性;

⑵ 若,求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省泰興市高三上學(xué)期第一次檢測文科數(shù)學(xué)試題 題型:解答題

(16分)已知函數(shù)(其中常數(shù)),是奇函數(shù)。

(1)求的表達(dá)式;

(2)討論的單調(diào)性,并求在區(qū)間上的最大值和最小值。

 

查看答案和解析>>

同步練習(xí)冊答案