已知F1(-1,0),F(xiàn)2(1,0)為平面內(nèi)的兩個(gè)定點(diǎn),動(dòng)點(diǎn)P滿足|PF1|+|PF2|=2
2
,記點(diǎn)P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A,B,C是曲線Γ上的不同三點(diǎn),且
OA
+
OB
+
OC
=
0

(。┰囂骄浚褐本AB與OC的斜率之積是否為定值?證明你的結(jié)論;
(ⅱ)當(dāng)直線AB過點(diǎn)F1時(shí),求直線AB、OC與x軸所圍成的三角形的面積.
(Ⅰ)由條件可知,點(diǎn)P到兩定點(diǎn)F1(1,0),F(xiàn)2(-1,0)的距離之和為定值2
2

所以點(diǎn)P的軌跡是以F1(1,0),F(xiàn)2(-1,0)為焦點(diǎn)的橢圓.…(2分)
a=
2
,c=1,所以b=1,
故所求方程為
x2
2
+y2=1
.…(4分)
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),C(x3,y3).
OA
+
OB
+
OC
=
0
,得x1+x2+x3=0,y1+y2+y3=0.…(5分)
(。┛稍O(shè)直線AB的方程為y=kx+n(k≠0),
代入x2+2y2=2并整理得,(1+2k2)x2+4knx+2n2-2=0,
依題意,△>0,則 x1+x2=-
4kn
1+2k2
,y1+y2=k(x1+x2)+2n=
2n
1+2k2
,
從而可得點(diǎn)C的坐標(biāo)為(
4kn
1+2k2
,-
2n
1+2k2
)
,kOC=-
1
2k

因?yàn)?span mathtag="math" >kABkOC=-
1
2
,所以直線AB與OC的斜率之積為定值.…(8分)
(ⅱ)若AB⊥x軸時(shí),A(-1,
2
2
),B(-1,-
2
2
)
,由
OA
+
OB
+
OC
=
0
,
得點(diǎn)C(2,0),所以點(diǎn)C不在橢圓Γ上,不合題意.
因此直線AB的斜率存在.…(9分)
由(。┛芍(dāng)直線AB過點(diǎn)F1時(shí),有n=k,點(diǎn)C的坐標(biāo)為(
4k2
1+2k2
,-
2k
1+2k2
)

代入x2+2y2=2得,
16k4
(1+2k2)2
+
8k2
(1+2k2)2
=2
,即4k2=1+2k2,
所以k=±
2
2
.                   …(11分)
(1)當(dāng)k=
2
2
時(shí),由(。┲,k•kOC=-
1
2
,從而kOC=-
2
2

故AB、OC及x軸所圍成三角形為等腰三角形,其底邊長為1,且底邊上的高h=
1
2
×
2
2
=
2
4
,所求等腰三角形的面積S=
1
2
×1×
2
4
=
2
8

(2)當(dāng)k=-
2
2
時(shí),又由(ⅰ)知,k•kOC=-
1
2
,從而kOC=
2
2
,
同理可求直線AB、OC與x軸所圍成的三角形的面積為
2
8

綜合(1)(2),直線AB、OC與x軸所圍成的三角形的面積為
2
8
.…(13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0),A(
1
2
,0),動(dòng)點(diǎn)P滿足3
PF1
PA
+
PF2
PA
=0.
(1)求動(dòng)點(diǎn)P的軌跡方程.
(2)是否存在點(diǎn)P,使PA成為∠F1PF2的平分線?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0),點(diǎn)p滿足|
PF
1
|+|
PF
2
|=2
2
,記點(diǎn)P的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)過點(diǎn)F2(1,0)作直線l與軌跡E交于不同的兩點(diǎn)A、B,設(shè)
F2A
F2B
,T(2,0),,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0)為橢圓
x2
a2
+
y2
b2
=1
的兩個(gè)焦點(diǎn),若橢圓上一點(diǎn)P滿足|
PF1
|+|
PF2
|=4
,則橢圓的離心率e=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0)、F2(1,0)為橢圓的焦點(diǎn),且直線x+y-
7
=0
與橢圓相切.
(Ⅰ)求橢圓方程;
(Ⅱ)過F1的直線交橢圓于A、B兩點(diǎn),求△ABF2的面積S的最大值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0)是橢圓
x2
a2
+
y2
b2
=1的兩個(gè)焦點(diǎn),點(diǎn)G與F2關(guān)于直線l:x-2y+4=0對(duì)稱,且GF1與l的交點(diǎn)P在橢圓上.
(I)求橢圓方程;
(II)若P、M(x1,y1),N(x2,y2)是橢圓上的不同三點(diǎn),直線PM、PN的傾斜角互補(bǔ),問直線MN的斜率是否是定值?如果是,求出該定值,如果不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案