如圖所示,在長方體ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M為棱CC1上一點.
(1)若,求異面直線A1M和C1D1所成角的正切值;
(2)是否存在這樣的點M使得BM⊥平面A1B1M?若存在,求出C1M的長;若不存在,請說明理由.

【答案】分析:(1)過點M作MN∥C1D,交D1D于N,連接A1N,可得∠A1MN或其補角就是異面直線A1M和C1D1所成角.再在Rt△A1NM中利用勾股定理和正切函數(shù)的定義,即可得到異面直線A1M和C1D1所成角的正切值;
(2)先假設(shè)存在M點,使得BM⊥平面A1B1M,并設(shè)C1M=x.根據(jù)平面幾何知識Rt△B1MB∽Rt△MB1C1,得到B1MB1B和C1M的比例中項,通過計算可得x=1或4,由此可知存在點M使得BM⊥平面A1B1M.
解答:解:(1)過點M作MN∥C1D,交D1D于N,連接A1N,
則∠A1MN或其補角就是異面直線A1M和C1D1所成角
在Rt△A1NM中,AB=1,A1N==
∴tan∠A1MN==
由此可得,當(dāng)時,異面直線A1M和C1D1所成角的正切值為;
(2)∵A1B1⊥平面BB1C1C,BM⊆平面BB1C1C,
∴A1B1⊥BM,
因此可得:只要B1M⊥BM,就有BM⊥平面A1B1M.
假設(shè)存在M點,使得BM⊥平面A1B1M,設(shè)C1M=x
則矩形BB1C1C中,B1M⊥BM,所以∠MB1C1=∠MBB1
∴Rt△B1MB∽Rt△MB1C1,所以=
∴B1M2=B1B•C1M,可得4+x2=5x,解之得x=1或4
∴當(dāng)C1M的長為1或4時,存在點M使得BM⊥平面A1B1M.
點評:本題給出特殊的四棱柱,求異面直線所成角并探索線面垂直的存在性,著重考查了異面直線所成角的求法和線面垂直的判定與性質(zhì)等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M為棱DD1上的一點.
(1)求三棱錐A-MCC1的體積;
(2)當(dāng)M為中點時,求證:B1M⊥平面MAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在長方體ABCDABCD′中,截下一個棱錐CADD′,求棱錐CADD′的體積與剩余部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在長方體中,AB=12,BC=6,AA′=5,分別過BCAD′的兩個平行平面將長方體分為體積相等的三個部分,那么FD′等于(  )

A.8        B.6    

C.4        D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在長方體中,AB=12,BC=6,AA′=5,分別過BC和A′D′的兩個平行平面將長方體分為體積相等的三個部分,那么F′D′等于(  )

A.8          B.6    

C.4          D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在長方體中,AB=12,BC=6,AA′=5,分別過BC和A′D′的兩個平行平面將長方體分為體積相等的三個部分,那么F′D′等于(  )

A.8          B.6    

C.4          D.3

查看答案和解析>>

同步練習(xí)冊答案