若關(guān)于x的表達式,求于任意的實數(shù)x均有意義,則實數(shù)m的取值范圍是(    )。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:
a
=(
3
sinx,cosx),
b
=(cosx,cosx),f(x)=2
a
b
+2m-1(x,m∈R)

(1)求f(x)關(guān)于x的表達式,并求f(x)的最小正周期;
(2)若x∈[0,
π
2
]
時,f(x)的最小值為5,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos2ωx-sin2ωx,sinωx)
,
b
=(
3
,2cosωx)
,設(shè)函數(shù)f(x)=
a
b
(x∈R)
的圖象關(guān)于直線x=
π
2
對稱,其中ω為常數(shù),且ω∈(0,1).
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)若將y=f(x)圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?span id="uuoc0ak" class="MathJye">
1
6
,再將所得圖象向右平移
π
3
個單位,縱坐標(biāo)不變,得到y(tǒng)=h(x)的圖象,若關(guān)于x的方程h(x)+k=0在區(qū)間[0,
π
2
]
上有且只有一個實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)對任意實數(shù)x均滿足f(2-x)+f(x-2)=2x2-8x+4,且f(-1)=0
(1)求f(x)的表達式;
(2)若關(guān)于x的方程f(x)=3lnx+b在[1,2]上有兩個不同實數(shù)解,求實數(shù)b的取值范圍;
(3)設(shè)g(x)=mlnx+
1
2
f(x+
1
2
)+
9
8
,若?x>0,使g(x)≤0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶一模)已知函數(shù)f(x)=x+1,設(shè)g1(x)=f(x),gn(x)=f(gn-1(x))(n>1,n∈N*).
(I)求g2(x)、g3(x)的表達式,并直接寫出gn(x)(n∈N*)表達式;
(II)設(shè)Sn(x)=g1(x)+g2(x)+g3(x)+…+gn(x),若關(guān)于x的函數(shù)y=x2+Sn(x)(n∈N*)在區(qū)間(-∞,-1]上的最小值為6,求n的值.

查看答案和解析>>

同步練習(xí)冊答案