10.E、M、N依次是正方體ABCD-A1B1C1D1的棱AB、AA1、A1D1的中點(diǎn),則平面EMN與面ABCD所成的二面角的大小為arctan$\sqrt{2}$.

分析 如圖所示,延長(zhǎng)NM交直線DA與點(diǎn)F,連接EF,則直線EF為平面EMN與面ABCD的交線.過(guò)點(diǎn)A作AQ⊥EF,垂足為Q,連接MQ,∵AM⊥平面ABCD,則EF⊥MQ.∠AQM即為平面EMN與面ABCD所成的二面角的平面角.
利用正方體的性質(zhì)與直角三角形的邊角關(guān)系即可得出.

解答 解:如圖所示,延長(zhǎng)NM交直線DA與點(diǎn)F,連接EF,則直線EF為平面EMN與面ABCD的交線.
過(guò)點(diǎn)A作AQ⊥EF,垂足為Q,連接MQ,∵AM⊥平面ABCD,則EF⊥MQ.
∴∠AQM即為平面EMN與面ABCD所成的二面角的平面角.
不妨取AB=2.
∵E、M、N依次是正方體ABCD-A1B1C1D1的棱AB、AA1、A1D1的中點(diǎn),
A1D1∥AD,
∴AM=AF=AE=1,∴$AQ=\frac{\sqrt{2}}{2}$.
在RT△AMQ中,tan∠AQM=$\frac{AM}{AQ}$=$\sqrt{2}$.
∴∠AQM=arctan$\sqrt{2}$.
故答案為:arctan$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了正方體的性質(zhì)與直角三角形的邊角關(guān)系、二面角,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.對(duì)于平面向量$\overrightarrow a$=(x,y),我們定義它的一種“新模長(zhǎng)”為|x+y|+|x-y|,仍記作$|{\overrightarrow a}$|,即|${\overrightarrow a}$|=|x+y|+|x-y|.在這種“新模長(zhǎng)”的定義下,給出下列命題:
①對(duì)平面內(nèi)的任意兩個(gè)向量$\overrightarrow a,\overrightarrow b$,總有$|{\overrightarrow a-\overrightarrow b}|≤|{\overrightarrow a}|+|{\overrightarrow b}$|;
②設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)P在直線y=x-1上運(yùn)動(dòng),則$|{\overrightarrow{OP}}$|的最小值=1;
③設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)P在圓O:x2+y2=1上運(yùn)動(dòng),則$|{\overrightarrow{OP}}$|的最大值=2;
④設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)P在橢圓$\frac{x^2}{4}+\frac{y^2}{1}$=1上運(yùn)動(dòng),則$|{\overrightarrow{OP}}$|的最小值=2;
寫出所有正確命題的序號(hào)①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.?dāng)?shù)列{an}的通項(xiàng)是關(guān)于x的不等式x2-x<nx(n∈N)的解集中的整數(shù)的個(gè)數(shù),且已知f(n)=$\frac{1}{{a}_{n}+1}$+$\frac{1}{{a}_{n}+2}$+…+$\frac{1}{{a}_{n}+n}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{{a}_{n}}{{2}^{n}}$,求{bn}的前n項(xiàng)和Sn;
(3)求證:對(duì)n≥2且n∈N,恒有$\frac{7}{12}$≤f(n)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在同一坐標(biāo)系中,函數(shù)y=sinx,x∈[0,2π]與y=sinx,x∈[2π,4π]的圖象(  )
A.重合B.形狀相同,位置不同
C.關(guān)于y軸對(duì)稱D.形狀不同,位置不同

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.若$f(n)=1+\frac{1}{{\sqrt{1}}}+\frac{1}{{\sqrt{2}}}+\frac{1}{{\sqrt{3}}}+…+\frac{1}{{\sqrt{n}}}$,(其中n>2,且n∈N),$g(n)=2\sqrt{n}$,(其中n>2,且n∈N),通過(guò)合情推理,試判斷f(n)與g(n)的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.根據(jù)正切函數(shù)的圖象,寫出使下列不等式成立的x的集合.
(1)$\frac{\sqrt{3}}{3}$+tanx≥0;
(2)tanx-$\sqrt{3}$≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知矩陣M=$[\begin{array}{l}{3}&{6}\\{2}&{2}\end{array}]$,則M的特征值為-1或6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,在正方形SG1G2G3中,E,F(xiàn)分別是G1G2,G2G3的中點(diǎn),D是EF的中點(diǎn),現(xiàn)沿SE,SF及EF把這個(gè)正方形折成一個(gè)幾何體,使G1,G2,G3三點(diǎn)重合于點(diǎn)G,這樣,下列五個(gè)結(jié)論:(1)SG⊥平面EFG;(2)SD⊥平面EFG;(3)GF⊥平面SEF;(4)EF⊥平面GSD;(5)GD⊥平面SEF.正確的是( 。
A.(1)和(3)B.(2)和(5)C.(1)和(4)D.(2)和(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,BC=$\sqrt{2}$,且PC⊥CD,BC⊥PA,E是PB的中點(diǎn).
(1)求證:平面PBC⊥平面EAC;
(2)若二面角P-AC-E的正弦值為$\frac{{\sqrt{3}}}{3}$,求直線PA與平面EAC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案