解:(1)函數(shù)f(x)的定義域為(0,+∞),f′(x)=
,
因為函數(shù)f(x)在x=2處的切線與直線 y=-
x-2013垂直,所以f′(2)=2,
即4-2(1-a)-(a-1)-
=2,解得a=-
,
所以a=-
.
(2)當a=2時,g(x)=f′(x)=
,
g′(x)=2x+1+
,因為x∈(0,+∞),所以g′(x)>0,
故g(x)的單調增區(qū)間是∈(0,+∞).
(3)h(x)=f′(x)+x
3+(a-2)x
2-(a
2+a-
)x+
=
,
h′(x)=
=3[x-(a-
)](x-
),
①當a-
=
即a=1時,h′(x)=
≥0,函數(shù)h(x)在(0,+∞)上單調遞增;
②當a-
<
≤0即a≤-
時,由h′(x)>0?x>0,函數(shù)h(x)在(0,+∞)上單調遞增;
③當a-
≤0<
即-
<a
時,由h′(x)>0?x>
,由h′(x)<0?0<x<
,函數(shù)h(x)在(0,
)上單調遞減,在(
,+∞)上單調遞增;
④當0<a-
<
即
<a<1時,由h′(x)>0?0<x<a-
或x>
,函數(shù)h(x)在(0,a-
),(
,+∞)上單調遞增,在(a-
,
)上單調遞減;
⑤當a-
>
即a>1時,由h′(x)>0?0<x<
或x>a-
,函數(shù)h(x)在(0,
),(a-
,+∞)上單調遞增,在(
,a-
)上單調遞減;
綜上,當a=1時,函數(shù)h(x)在(0,+∞)上單調遞增;當
<a<1時,函數(shù)h(x)的增區(qū)間是(0,a-
),(
,+∞),減區(qū)間是(a-
,
);
當-
<a
時,函數(shù)h(x)的增區(qū)間是(
,+∞),減區(qū)間是(0,
);當a≤-
時,函數(shù)h(x)在(0,+∞)上單調遞增;
當a>1時,函數(shù)h(x)的增區(qū)間是(0,
),(a-
,+∞),減區(qū)間是(
,a-
).
分析:(1)由函數(shù)f(x)在x=2處的切線與直線 y=-
x-2013垂直,知f′(2)=2,由此可求a值;
(2)當a=2時,可求g(x),利用導數(shù)與函數(shù)單調性的關系可求其單調區(qū)間;
(3)求出h′(x),然后利用導數(shù)與函數(shù)單調性的關系解含參的二次不等式即可.
點評:本題考查導數(shù)的幾何意義、導數(shù)與函數(shù)單調性的關系,考查含參的二次不等式的解法及分類討論思想,難度較大.